Package ‘squash’

Version 1.0.9  
Date 2020-02-19  
Title Color-Based Plots for Multivariate Visualization  
Author Aron C. Eklund  
Maintainer Aron C. Eklund <aroneklund@gmail.com>  
Imports graphics, grDevices, methods, stats  
Description Functions for color-based visualization of multivariate data, i.e. colorgrams or heatmaps. Lower-level functions map numeric values to colors, display a matrix as an array of colors, and draw color keys. Higher-level plotting functions generate a bivariate histogram, a dendrogram aligned with a color-coded matrix, a triangular distance matrix, and more.  
License Artistic-2.0  
URL https://github.com/aroneklund/squash  
NeedsCompilation no  
Repository CRAN  
Date/Publication 2020-02-20 07:00:05 UTC  

R topics documented:

cimage .............................................................. 2  
cmap ................................................................. 4  
colorgram ............................................................ 5  
ColorPalettes ....................................................... 7  
corrogram ............................................................ 9  
dendromat .......................................................... 10  
diamond ............................................................. 12  
distogram ........................................................... 13  
hist2 ................................................................. 14  
hkey ................................................................. 15  
makecmap ........................................................... 16  
matapply ............................................................ 18  
prettyInt ............................................................ 19
cimage

Description

Draw a matrix of colored rectangles, possibly of varying sizes.

Usage

cimage(x = NULL, y = NULL, zcol = NULL, zsize = 1,
    xlab = NULL, ylab = NULL, xlabels = NULL, ylabels = NULL,
    border = NA, add = FALSE, axes = TRUE, useRaster = FALSE, ...)

Arguments

x Vector of rectangle midpoints or breakpoints along X-axis (corresponding to the columns of zcol).
y Vector of rectangle midpoints or breakpoints along Y-axis (corresponding to the rows of zcol).
zcol Matrix of colors for each rectangle, e.g. RGB values or integer indices.
zsize Relative size for each rectangle, ranging from 0 to 1. Will be recycled if necessary.
xlab, ylab Labels for the axes.
xlabels, ylabels Categorical labels for rows/columns.
border Color for rectangle borders.
add Add to the current plot instead of creating a new one?
axes Draw axes on the plot?
useRaster TRUE = draw a true raster image (using rasterImage). FALSE = draw a series of individual rectangles.
... Further arguments passed to plot.
Details

Data (x, y, and zcol) can be passed to this function in any format recognized by `xyzmat.coords`. This function is somewhat similar to the function `image`, except that the colors are specified explicitly, and the size of each rectangle can be adjusted.

If `xlabels` is `NULL` (the default), standard numeric axes are drawn on the X-axis. If `xlabels` is `TRUE`, the rownames of `zcol` are placed below each column. Otherwise, `xlabels` is taken as a vector of labels to be placed below each column. Likewise for `ylabels` and the Y-axis.

Using `useRaster=TRUE` can reduce the file size for large matrices drawn to vector-based graphics output such as PDFs. However, the output may look strange with smaller matrices on graphics devices that do smoothing by default (such as PDF output viewed in Preview).

Value

None.

Note

Currently, this function will not behave as expected if the x and/or y values are specified as midpoints and are not evenly spaced.

See Also

`image` and `rasterImage` provide somewhat similar functionality.

This function is called by `colorgram`, which accepts a numeric (rather than color) matrix as input.

The package `pixmap` may be more suitable for plotting images that are not data-driven (e.g. external files).

Examples

```r
## Visualize nearly all built-in R colors
color.mat <- matrix(colors()[1:625], nrow = 25)
cimage(zcol = color.mat)

## An example using "zsize"
x <- y <- 1:10
zcolor <- matrix( rainbow(100)[outer(x, y)], nrow = 10 )
zsize <- matrix( runif(100), nrow = 10 )
cimage(x, y, zcol = zcolor, zsize = zsize)

## Another simple example
red <- green <- 0:255
rg <- outer(red, green, rgb, blue = 1, maxColorValue = 255)
cimage(red, green, zcol = rg)

## The same, but using useRaster (resulting in faster image generation,
## and smaller file size if saved as a PDF)
cimage(red, green, zcol = rg, useRaster = TRUE)
```
## An example with categorical axes

colormixer <- function(x, y) {
  r <- (col2rgb(x) + col2rgb(y)) / 2
  rgb(as.data.frame(t(r)), maxColorValue = 255)
}

set.seed(123)
x <- sample(colors(), 15)
y <- sample(colors(), 10)
mix <- outer(x, y, colormixer)
op <- par(mar = c(8, 8, 2, 2), las = 2)
cimage(zcol = mix, xlabels = x, ylabels = y, xlab = NA, ylab = NA)
par(op)

## An example with non-uniform midpoints and breakpoints

rg2 <- rg[seq(1, 255, by = 62), seq(1, 255, by = 62)]
cimage(x = (1:5)^2, y = c(3, 5, 6, 9, 10, 11), zcol = rg2,
       zsize = matrix(runif(25, min = 0.5), nrow = 5))

---

cmap

### Apply a color map to numeric data

#### Description

Map numeric (scalars, vectors, matrices) into colors, (optionally) using a specified color map.

#### Usage

```r
cmap(x, map, outlier = NULL, ...)
```

#### Arguments

- `x` Something numeric (vector, matrix).
- `map` The color map to use (as created by `makecmap`). If missing, a color map is created.
- `outlier` Color for values outside the map domain, or NULL to generate an error in case of such values (see Details).
- `...` Arguments passed to `makecmap`, if map is undefined.

#### Details

Values in x outside the domain of map cause either an error (if outlier=NULL) or a warning (otherwise).

#### Value

Something of the same size as x. May be character (RGB) or integer (palettes) depending on the color map used. Dimensions and dimnames are preserved.
**See Also**

`makecmap`. Also, `as.raster` and `level.colors` have similar functionality.

**Examples**

```r
x <- y <- 1:50
mat1 <- outer(x, y)

## several ways of visualizing the matrix mat1:
plot(col(mat1), row(mat1), col = cmap(mat1), pch = 16)
cimage(x, y, zcol = cmap(mat1))
colorgram(x = x, y = y, z = mat1)

## treatment of out-of-domain values
map <- makecmap(0:100, colFn = greyscale)
x <- y <- -10:10
mat2 <- outer(x, y, "+")

## Not run:
## Values outside the domain of "map" generate an error...
plot(col(mat2), row(mat2), col = cmap(mat2, map), pch = 15, cex = 2)
## ... unless we specify "outlier", but this still generates a warning
plot(col(mat2), row(mat2), col = cmap(mat2, map, outlier = "red"), pch = 15, cex = 2)
## End(Not run)
```

---

**colorgram**  
*Draw a colorgram (heatmap) of a matrix*

**Description**

Plot a visual representation of a numeric matrix using colors to indicate values.

**Usage**

```r
colorgram(x = NULL, y = NULL, z = NULL, zsize = 1,  
map, nz = 10, breaks = pretty, symm = FALSE, base = NA, colFn = jet,  
key = hkey, key.args = list(),  
xlab = NULL, ylab = NULL, zlab = NULL,  
outlier = NULL, ...)
```
Arguments

- **x, y** Locations of grid lines at which the values in z are measured. These must be finite, non-missing and in (strictly) ascending order. (see Details below)

- **z** A numeric matrix containing the values to be visualized as colors (NAs are allowed). Note that x can be used instead of z for convenience.

- **zsize** A numeric matrix specifying the relative size of each rectangle.

- **map** A list, as generated by `makecmap`. If missing, a color map is generated automatically.

- **nz, breaks, symm, base, colFn** Arguments passed to `makecmap`, if map is missing.

- **key** A function to draw a color key, such as `hkey` or `vkey`.

- **key.args** Arguments passed to the function given by key.

- **xlab, ylab** Labels for axes.

- **zlab** Label (title) for the color key.

- **outlier** Color for values outside the map domain. If NULL, values falling outside the map domain will generate an error.

- **...** Further arguments passed to `cimage`.

Details

This function assigns colors to the elements of a matrix and plots it using `cimage`.

Data can be passed to this function in any format recognized by `xyzmat.coords`.

colorgram is somewhat similar to `image`. However, colorgram adds the following functionality:

1. The value-to-color mapping can be specified (thus allowing unequal bin sizes).
2. A color key can be added, optionally.
3. A color can be specified for missing values.
4. The size of each grid rectangle can be adjusted to convey additional information.

Two color key functions are provided in the squash package: 1) `hkey` draws a horizontal key, in the lower-left corner by default. 2) `vkey` draws a vertical key, in the lower-right corner by default. The latter usually looks better if the right-hand margin is increased. These keys can be controlled somewhat using `key.args`. However, that `title` and map cannot be specified in `key.args`; use the `zlab` and map arguments instead.

Value

Invisibly, map.

See Also

If this is not quite what you are looking for, consider `image`, `filled.contour`, or `levelplot`. Also `color2D.matplot` in the `plotrix` package.
Examples

```r
## median Petal.Length as function of Sepal.Length and Sepal.Width
pl <- matapply( iris[,1:3], FUN = median, nx = 20, ny = 15 )

## Draw a colorgram with the default horizontal color key
colorgram(pl, main = 'iris')

## ... or with the vertical color key
colorgram(pl, main = 'iris', key = vkey)

## ... add margin space to improve legibility
op <- par(mar = c(5,4,4,4)+0.1)
colorgram(pl, main = 'iris', key = vkey,
  key.args = list(skip = 2), zlab = 'Petal\nlength')
par(op)

## Here is the example from the base function "persp"
x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/(r) }
z <- outer(x, y, f)
colorgram(x, y, z)

## ... and with a slight fix to the key:
colorgram(x, y, z, key.args = list(wh = c(1, 4, 14)))

## We could also make more space for the key:
op <- par(mar = c(7,4,4,2)+0.1)
colorgram(x, y, z, key.args = list(stretch = 3))
par(op)

## Here are some alternatives to colorgram
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")
image(x, y, z)
contour(x, y, z)

## Use 'xlabels' and 'ylabels' to create categorical axes
colorgram(t(mtcars[,c(2,8:11)]), colFn = heat,
  xlabels = TRUE, ylabels = TRUE,
  xlab = NA, ylab = NA, zlab = 'Value',
  main = 'Motor car specifications', las = 1)
```

---

**ColorPalettes**

**Bonus color palettes**

**Description**

Generate a vector of contiguous colors of a specified length.
Usage

rainbow2(n)
jet(n)
heat(n)
coolheat(n)
blueorange(n)
bluered(n)
darkbluered(n)
greyscale(n, start = 0.9, end = 0)
grayscale(n, start = 0.9, end = 0)

Arguments

n  Number of colors to return.
start, end  Levels of gray (1 = white, 0 = black).

Details

rainbow2 is a variation of rainbow, in which the colors do not cycle completely around. Thus, rainbow2 may be less ambiguous as a color scale.

jet is similar to the Matlab color scheme of the same name and is taken from an example in colorRamp.

heat is similar to heat.colors, but starts at black rather than red.

coolheat is the diverging version of heat, running from cyan to black to yellow.

blueorange and bluered range from blue to grey to orange (or red), and are intended to be used as diverging color scales.

darkbluered ranges from dark blue to grey to dark red, and is intended to be used as a diverging color scale that emphasizes the magnitude more than the sign.

greyscale or grayscale ranges from off-white to black.

Value

A vector of RGB colors.

See Also

Standard R palettes such as rainbow.

Custom palettes can be generated with colorRamp.

Examples

## Present the squash palettes along with the built-in R palettes
squash.palettes <- c('rainbow2', 'jet', 'grayscale', 'heat',
                      'coolheat', 'blueorange', 'bluered', 'darkbluered')
R.palettes <- c('rainbow', 'heat.colors', 'terrain.colors', 'topo.colors', 'cm.colors')
corrogram

Draw a color-coded triangular matrix of pairwise correlations

description

This figure is a color-coded, rotated triangular matrix indicating the correlation between every pair of items.

usage

corrogram(...)

arguments

... Arguments passed to distogram.

details

This is a simple wrapper around distogram, with the color scale set by default to use blueorange with a range from -1 to +1.

value

A color map (as generated by makecmap), invisibly.

see also

distogram

examples

corrogram(cor(swiss), title = 'Pearson correlation')
dendromat

Plot a dendrogram with a colorgram underneath

Description

Plot a dendrogram with a colorgram underneath. The colorgram typically indicates characteristics about each element in the dendrogram.

Usage

dendromat(x, mat,
    labRow = rownames(mat), labCol = colnames(mat),
    height = NA, gap = 0, matlabside = 2, border = NA,
    cex.lab = par("cex.axis"), ...)

Arguments

x          An object of type hclust or dendrogram.
mat        A matrix or data frame of colors, with each row corresponding to an item in the dendrogram.
labRow     Labels of items, to be placed underneath the matrix.
labCol     Labels for characteristics, to be placed next to the matrix.
height     Fraction of the plot area to reserve for the color matrix. If NA, the spacing is set automatically.
gap        Extra space (in lines) to add between the dendrogram and the matrix.
matlabside Which side of the matrix to put labCol (2 or 4).
border     Border color for the color matrix.
cex.lab    Relative text size for the item labels.
...        Further arguments passed to plot.dendrogram.

Details

The order of labRow and the rows of mat should correspond to the input to hclust (or whatever function created x). This function reorders mat and labRow to match the dendrogram, using order.dendrogram.

This function combines two plots using layout; therefore it is incompatible with other multiple-plot schemes (e.g. par(mfrow)).

If height == NA (the default), the function tries to leave enough room for the item labels at the bottom, and enough room for the color matrix in the middle. The leftover plotting area on the top is used for the dendrogram. The lower margin setting (see par) is ignored.

If labRow is set to NULL, or is equal to NULL because mat lacks rownames, then the item labels are taken from x instead.
Value
none.

Note
Currently, horizontal dendrograms are not supported.
After dendromat is finished, the user coordinates are set to c(0,1,0,1).

See Also
heatmap

Examples

```r
## Motor Trend car road test data
mt.dend <- hclust(dist(mtcars[,1:7]))
mt.mat <- mtcars[,8:11]

## A minimal dendromat
dendromat(mt.dend, mt.mat)

## The same plot, but with a few enhancements
names(mt.mat) <- c('Straight', 'Manual', '# gears', '# carbs')
dendromat(mt.dend, mt.mat, gap = 0.5, border = 'gray', las = 2,
         ylab = 'Euclidean distance',
         main = 'mtcars, clustered by performance')
legend('topright', legend = 0:8, fill = 0:8)

## US state data, with color keys
us.dend <- hclust(dist(scale(state.x77)))

income <- state.x77[, 'Income']
frost <- state.x77[, 'Frost']
murder <- state.x77[, 'Murder']

income.cmap <- makecmap(income, n = 5, colFn = colorRampPalette(c('black', 'green')))
frost.cmap <- makecmap(frost, n = 5, colFn = colorRampPalette(c('black', 'blue')))
murder.cmap <- makecmap(murder, n = 5, colFn = colorRampPalette(c('black', 'red')))

us.mat <- data.frame(Frost = cmap(frost, frost.cmap),
                     Murder = cmap(murder, murder.cmap),
                     Income = cmap(income, income.cmap))

par(mar = c(5,4,4,3)+0.1)
dendromat(us.dend, us.mat,
          ylab = 'Distance', main = 'US states')

vkey(frost.cmap, 'Frost')
vkey(murder.cmap, 'Murder', y = 0.3)
```
diamond

Description

Draw diamonds on the graphics device.

Usage

diamond(x, y = NULL, radius, ...)

Arguments

x, y  Position(s) of the centers of the diamonds.
radius  Distances from the center to the vertex.
...  Further arguments passed to polygon (e.g. col, border).

Details

x and y can be passed to diamond in any form recognized by xy.coords (e.g. individual vectors, list, data frame, formula).

Only “square” (equilateral) diamonds are implemented here.

See Also

rect

Examples

plot(1:10)
diamond(1:10, rep(3, 10), radius = 0.4)
diamond(3, 8, 1, border = 3)
diamond(1:10, rep(5, 10), radius = seq(0.1, 1, length = 10), col = 1:10)
distogram

**Draw a color-coded triangular distance matrix**

**Description**

This function draws a color-coded, rotated triangular matrix indicating the "distance" between every pair of items.

**Usage**

```
distogram(x, map, 
  n = 10, base = NA, colFn = heat,  
  key = TRUE, title = NA, ...)
```

**Arguments**

- `x` A `dist` object, or a square numeric matrix.
- `map` A color map, as generated by `makecmap` (optional).
- `n, base, colFn` Arguments passed to `makecmap`, if map is omitted.
- `key` Add a color key?
- `title` Title for the color key.
- `...` Further arguments passed to `trianglegram`, (e.g. labels).

**Details**

If the input `x` is a matrix, the lower triangle is extracted by default (but see the arguments for `trianglegram`).

**Value**

The color map, invisibly.

**See Also**

corrogram

**Examples**

```r
## Distances between European cities
distogram(eurodist, title = 'Distance (km)')

## Some variations
map <- distogram(eurodist, key = FALSE, colFn = jet, right = TRUE)
vkey(map, title = 'Distance (km)', x = -8)
```
Description

Calculate data for a bivariate histogram and (optionally) plot it as a colorgram.

Usage

```r
hist2(x, y = NULL,
      nx = 50, ny = nx,
      xlim = NULL, ylim = NULL,
      xbreaks = NULL, ybreaks = NULL,
      plot = TRUE,
      xlab = NULL, ylab = NULL, zlab = "Counts",
      colFn = heat, breaks = prettyInt, ...)
```

Arguments

- **x, y** Numeric vectors.
- **nx, ny** Approximate number of intervals along x and y axes.
- **xlim, ylim** Limit the range of data points considered.
- **xbreaks, ybreaks** Breakpoints between bins along x and y axes.
- **plot** Plot the histogram?
- **xlab, ylab** Axis labels.
- **zlab** Label for the color key.
- **colFn, breaks** Color key parameters; see `makecmap`.
- **...** Further arguments passed to `colorgram`.

Details

Data can be passed to `hist2` in any form recognized by `xy.coords` (e.g. individual vectors, list, data frame, formula).

Value

Invisibly, a list with components:

- **x** Vector of breakpoints along the x-axis.
- **y** Vector of breakpoints along the y-axis.
- **z** Matrix of counts.
- **xlab** A label for the x-axis.
- **ylab** A label for the y-axis.
- **zlab** A label for the color key.
hkey

See Also

hist, for a standard (univariate) histogram.

hist2d in the gplots package for another implementation.

The hexbin package, for a hexagonal implementation.

Examples

```r
set.seed(123)
x <- rnorm(10000)
y <- rnorm(10000) + x
hist2(x, y)

## pseudo-log-scale color breaks:
hist2(x, y, breaks = prettyLog, key.args = list(stretch = 4))

## log-scale color breaks; the old way using 'base'
## (notice box removal to make space for the vertical color key)
hist2(x, y, base = 2, key = vkey, nz = 5, bty = 'l')
```

hkey

Add a color key to a plot

Description

Add a horizontal or vertical color key to a plot

Usage

```r
hkey(map, title = NA, side = 1, stretch = 1.4, x, y, skip, wh)
vkey(map, title = NA, side = 2, stretch = 1.4, x, y, skip, wh)
```

Arguments

- `map`: A list, as generated by `makecmap`.
- `title`: Title for the key.
- `side`: Where to place the labels. (1 or 3 for hkey, 2 or 4 for vkey)
- `stretch`: Aspect ratio of the color rectangles.
- `x, y`: Position of lower left corner of the color rectangles. If missing, the key will be placed automatically in the lower-left (hkey) or lower-right (vkey) corner of the figure region.
- `skip`: Omit every skip labels (optional).
- `wh`: Integer indices indicating which labels to include (optional).
makecmap

Generate a color map from numeric values to colors

Description

Generate a color map from numeric values to a contiguous set of colors.

Usage

makecmap(x, n = 10, breaks = pretty,
    symm = FALSE, base = NA,
    colFn = jet, col.na = NA,
    right = FALSE, include.lowest = FALSE, ...)

Arguments

x  A vector of numbers (only the finite range is used).

n  Approximate number of color levels desired.

breaks  A function to generate breakpoints, or the breakpoints themselves.

symm  Extend the mapping domain to be symmetric around zero?

base  Base for log scale, or NA to use a linear scale.

colFn  A function that generates contiguous colors.

details

This function tries to label as many breakpoints as possible, but if the labels would overlap a subset of labels is chosen automatically. If this doesn’t look right, the subset of labels can be specified with either skip or wh.

Clipping is turned off, so the key can be placed anywhere in the figure region, including the margins.

Examples

attach(iris)
map <- makecmap(Petal.Length)
pl.color <- cmap(Petal.Length, map = map)

plot(Sepal.Length, Sepal.Width, col = pl.color, pch = 16)
hkey(map, title = 'Petal length (hkey default)')
hkey(map, title = 'Another hkey', x = 3.8, y = 4.7, stretch = 3)

## looks bad with default margins
vkey(map, title = 'vkey default')
vkey(map, title = 'Small vkey', x = 7.8, y = 4, stretch = 0.3)
### makecmap

- **col.na**: Color to use for missing values.
- **right**: Logical; if TRUE, the intervals will be closed on the right (and open on the left).
- **include.lowest**: Logical, indicating if an \( x[i] \) equal to the lowest (or highest, for right = FALSE) breaks value should be included.
- ... Further arguments to breaks.

### Details

The general point of this function is to automatically generate a mapping that can be used in combination with `cmap` to represent numeric data with colors in a consistent way.

- **colFn**: Should be a function that returns a vector of colors of specified length, such as `rainbow`, `greyScale`. Custom functions of this type can be generated with `colorRampPalette`.

The breakpoints can be specified explicitly by setting `breaks` to a vector of numbers, in which case `x` is ignored. Otherwise, the breakpoints are chosen to be nice, relatively round values (using `pretty`, or another function passed to `breaks`) covering the finite range of `x`.

- **symm**: If TRUE, the map domain is extended such that it is symmetric around zero. This can be useful when using divergent color palettes to ensure that the zero point is a neutral color.

- **base**: If specified, the breakpoints are generated using log-transformed data. However, setting `breaks = prettyLog` might be preferable.

### Value

A list with the following components:

- **breaks**: Breakpoints (numeric vector).
- **colors**: Colors (character or numeric vector).
- **base**: (as supplied in arguments)
- **col.na**: (as supplied in arguments)
- **right**: (as supplied in arguments)
- **include.lowest**: (as supplied in arguments)

### See Also

- `cmap` and `colorgram` use the mappings generated by this function.
- `hkey` plots a color key.

Consider setting `breaks = prettyInt` or `breaks = prettyLog`.

### Examples

```r
attach(iris)
map1 <- makecmap(Petal.Length)
myColors <- cmap(Petal.Length, map = map1)
plot(Sepal.Length, Sepal.Width, col = myColors, pch = 16)
hkey(map1, title = 'Petal.Length')```
### Compare the 'breaks' element in the following:

```r
x <- rnorm(100) * 1000
str(makecmap(x))
str(makecmap(x, breaks = c(-Inf, -1000, 0, 1000, Inf)))
str(makecmap(x, breaks = prettyLog))
```

---

**matapply**

Apply a function over z coordinates, binned by their x, y coordinates

---

**Description**

Divide the range of x and y into intervals, thus forming a matrix of bins, and apply an arbitrary function to the z values corresponding to each bin.

**Usage**

```r
matapply(x, y = NULL, z = NULL, FUN,
  nx = 50, ny = nx,
  xlim = NULL, ylim = NULL,
  xbreaks = NULL, ybreaks = NULL,
  right = FALSE, include.lowest = TRUE, ...)
```

**Arguments**

- `x, y, z` Numeric vectors, or possibly a matrix.
- `FUN` Function to summarize z values.
- `nx, ny` Approximate number of bins along x and y axis.
- `xlim, ylim` Limit the range of data points considered.
- `xbreaks, ybreaks` Breakpoints between bins along x and y axes.
- `right` Logical; if TRUE, the intervals will be closed on the right (and open on the left).
- `include.lowest` Logical, indicating if an x[i] equal to the lowest (or highest, for right = FALSE) breaks value should be included.
- `...` Further arguments to `FUN`.

**Details**

x, y and z values can be passed to squash in any form recognized by `xyz.coords` (e.g. individual vectors, list, data frame, formula).

Alternatively, data that is already in a matrix can be passed in any format recognized by `xyzmat.coords`.

`FUN` should accept a numeric vector and return a single numeric value (e.g. `mean`, `median`, `min`, `max`, `sd`).

If `xbreaks` is not specified, approximately `nx` breakpoints will be generated automatically to span the data; likewise for `ybreaks` and `ny`.

The output can be visualized with `colorgram`, `image`, etc.
Pretty breakpoints

### Description

Compute a sequence of around n values covering the range of x. These functions are variations of the standard R function `pretty`.

### Usage

```r
prettyInt(x, n = 5, ...)  
prettyLog(x, n = 5, small = NA, logrange = c(-100, 100))
```
Arguments

- **x**: Numeric vector.
- **n**: Approximate number of values to return.
- **small**: Value below which distinction from zero is unimportant.
- **logrange**: Log (base 10) of the range of values to consider as possible breakpoints.
- **...**: Further arguments passed to `pretty`.

Details

`prettyInt` returns integer values, even if this forces the number of values returned to be much lower than the requested number `n`. However, at least two values will be returned.

`prettyLog` returns values that are approximately evenly spaced on a log scale, such as (1, 3, 10, 30, ...) or (1, 2, 5, 10, 20, 50, ...) or (1, 10, 100, ...). Negative or zero values in `x` are accommodated by series such as (-100, -10, -1, 0, 1, 10, 100, ...). Setting the parameter `small` to a non-NA value will ignore `x` with absolute values below `small`.

Value

A numeric vector.

See Also

- `pretty`

Examples

```r
##
x1 <- 1:3
pretty(x1)
prettyInt(x1)
prettyLog(x1)

##
x2 <- pi ^ (1:8)
range(x2)
pretty(x2)
prettyLog(x2)
prettyLog(x2, n = 10)

##
x3 <- c(-x2, x2)
pretty(x3)
prettyLog(x3)
prettyLog(x3, small = 100)
```
savemat

Save a matrix as a raster image file

Description

Save a matrix as a PNG, TIFF, BMP, JPEG, or PDF image file, such that each pixel corresponds to exactly one element of the matrix.

Usage

savemat(x, filename, map = NULL, outlier = NULL,
dev = c('png', 'pdf', 'bmp', 'tiff', 'jpeg'),
do.dev.off = TRUE, ...)

Arguments

x A matrix
filename Filename
map (Optional) a list, as generated by makecmap.
outlier (Optional) A color for outliers, if map is specified.
dev Which graphics device to use.
... Further arguments passed to the graphics device; see png or pdf.
do.dev.off Close graphics device when finished?

Details

This function is a relatively simple wrapper around the usual graphics device with the same name as dev. The idea is to provide an easy way of creating an image file from a matrix, without axes, plotting frame, labels, etc.

For all choices of dev except "pdf", the output image dimensions are set to match the matrix size, such that each pixel corresponds to an element of the matrix.

If map is NULL (the default), the matrix is interpreted as a matrix of colors.

If map is specified, it is used to translate the numeric matrix x into a matrix of colors, using cmap.

Value

None.

See Also

cimage for drawing a matrix on the screen.
Examples

```r
## Not run:
big.color.matrix <- matrix(rep(colors()[1:625], 16), nrow = 100)

## save as a PNG
savemat(big.color.matrix, file = 'test.png')

## End(Not run)
```

**squashgram**

*Visualize a function of z coordinates, binned by x, y coordinates*

Description

This is a convenience function combining `matapply` and `colorgram`. 3-dimensional data is summarized in 2-dimensional bins and represented as a color matrix. Optionally, the number of observations in each bin is indicated by relative size of the matrix elements.

Usage

```r
squashgram(x, y = NULL, z = NULL, FUN, nx = 50, ny = nx, xlim = NULL, ylim = NULL,
            xbreaks = NULL, ybreaks = NULL,
            xlab = NULL, ylab = NULL, zlab = NULL,
            shrink = 0, ...)
```

Arguments

- `x`, `y`, `z` Numeric vectors; see Details.
- `FUN` Function to summarize z values.
- `nx`, `ny` Approximate number of bins along x and y axis.
- `xlim`, `ylim` Limit the range of data points considered.
- `xbreaks`, `ybreaks` Breakpoints between bins along x and y axes.
- `xlab`, `ylab` Axis labels.
- `zlab` Label for color key.
- `shrink` Rectangle shrinkage cutoff.
- `...` Further arguments passed to `colorgram`.
Details

This function may be useful for visualizing the dependence of a variable \( z \) on two other variables \( x \) and \( y \).

\( x \), \( y \) and \( z \) values can be passed to `squash` in any form recognized by `xyz.coords` (e.g. individual vectors, list, data frame, formula).

This function calls `matapply` and plots the result along with a color key.

If non-zero, the `shrink` parameter reduces the size of rectangles for the bins in which the number of samples is smaller than `shrink`. This may be useful to reduce the visual impact of less reliable observations.

Value

None.

See Also

The lower-level functions `matapply` and `colorgram`.

Examples

```r
## earthquake depths in Fiji
attach(quakes)
squashgram(depth ~ long + lat, FUN = mean)

## iris measurements
attach(iris)
squashgram(Sepal.Length, Sepal.Width, Petal.Length,
           FUN = median, nx = 20, ny = 15)

## Here indicate sample size by size of rectangles
squashgram(iris[,1:3], FUN = median,
           nx = 20, ny = 15, shrink = 5)

## What is the trend in my noisy 3-dimensional data?
set.seed(123)
x <- rnorm(10000)
y <- rnorm(10000)
z <- rnorm(10000) + cos(x) + abs(y / 4)
squashgram(x, y, z, median, colFn = bluered, shrink = 5)
```

trianglegram

Draw a color-coded triangular matrix

Description

This function is called by `distogram`, and probably isn’t very useful by itself.
Usage

trianglegram(x, labels = rownames(x),
  lower = TRUE, diag = FALSE, right = FALSE,
  add = FALSE, xpos = 0, ypos = 0, xlim, ylim, ...)

Arguments

  x              A square matrix containing color values.
  labels         Labels.
  lower          If TRUE, use lower.tri, else use upper.tri.
  diag           Include the diagonal elements of x?
  right          Should triangle point to the right or left?
  add            Add to an existing plot?
  xpos, ypos     Location of bottom point of the triangle.
  xlim, ylim     Plotting limits.
  ...            Further arguments passed to plot.

Details

  The input must be a (square) matrix; however, only part of the matrix (the upper or lower triangle)
  is displayed.

Value

  none.

See Also

  distogram, corrogram

Examples

  m <- matrix(jet(40), nrow = 20, ncol = 20)
  trianglegram(m)

  ## just for fun
  trianglegram(m, labels = NA, right = TRUE, add = TRUE, xpos = 1)
xyzmat.coords

Extract (x, y, z) coordinates, where z is a matrix

Description

Extract (x, y, z) plotting coordinates, where z is a matrix.

Usage

xyzmat.coords(x = NULL, y = NULL, z = NULL,
               xlab = NULL, ylab = NULL, zlab = NULL,
               xds = NULL, yds = NULL, zds = NULL)

Arguments

x, y
   Numeric vectors.

z
   A matrix

xlab, ylab, zlab
   Labels

xds, yds, zds
   Results from deparse(substitute(x)) (etc.); see below.

Details

This function is similar to xyz.coords, except that this function accepts a matrix for z.

If x is the same length as nrow(z), x will be taken as the points at which the z values were sampled.
If x is the length of nrow(z) + 1, x is taken as the breakpoints between bins. If x is missing, the matrix indices (1:nrow(z)) will be used. Similarly for y and the columns of z.

For convenience, the matrix can supplied as the x argument. Or, x can be a list with elements including {x, y, z, xlab, ylab, zlab}.

When this function is used inside a higher-level plotting function, the arguments xds, yds, and zds should be set to deparse(substitute(x)) (etc.) so that the function can generate informative default axis labels. For example, see the code for colorgram.

Value

A list with the following components:

x
   X coordinates

y
   Y coordinates

z
   Z matrix

xlab
   Label for X axis

ylab
   Label for Y axis

zlab
   Label for Z axis
Examples

```r
##
str(volcano)
volcano.xyzmat <- xyzmat.coords(volcano)
str(volcano.xyzmat)
```

---

**xyzmat2xyz**

*Convert (x, y, zmat) coordinates to (x, y, z) coordinates*

**Description**

Convert a matrix of Z coordinates into (x, y, z) triples.

**Usage**

```r
xyzmat2xyz(...)
```

**Arguments**

```r
...
```

Arguments passed to `xyzmat.coords`

**Details**

The input is based on `xyzmat.coords`.

The output is as returned by `xyz.coords`.

**Value**

A list; see `xyz.coords`.

**Examples**

```r
##
str(volcano)
volcano.xyz <- xyzmat2xyz(volcano)
str(volcano.xyz)
```
Index

* **aplot**
  - diamond, 12
  - hkey, 15
  - trianglegram, 23

* **color**
  - cmap, 4
  - ColorPalettes, 7
  - hkey, 15
  - makecmap, 16

* **dplot**
  - prettyInt, 19

* **hplot**
  - cimage, 2
  - colorgram, 5
  - corrogram, 9
  - dendromat, 10
  - distrogram, 13
  - hist2, 14
  - squashgram, 22

* **manip**
  - xyzmat.coords, 25
  - xyzmat2xyz, 26

* **misc**
  - matapply, 18
  - savemat, 21

  as.raster, 5

  blueorange, 9
  blueorange (ColorPalettes), 7
  bluered (ColorPalettes), 7

  cimage, 2, 6, 21
  cmap, 4, 17, 21
  colorgram, 3, 5, 14, 17, 18, 22, 23, 25
  ColorPalettes, 7
  colorRamp, 8
  colorRampPalette, 17
  coolheat (ColorPalettes), 7
  corrogram, 9, 13, 24

  cut, 19
  darkbluered (ColorPalettes), 7
  dendrogram, 10
  dendromat, 10
  diamond, 12
  dist, 13
  distrogram, 9, 13, 23, 24

  filled.contour, 6
  grayscale (ColorPalettes), 7
  greyscale, 17
  greyscale (ColorPalettes), 7
  hclust, 10
  heat (ColorPalettes), 7
  heat.colors, 8
  heatmap, 11
  hist, 15
  hist2, 14
  hkey, 6, 15, 17

  image, 3, 6, 18

  jet (ColorPalettes), 7

  layout, 10
  level.colors, 5
  levelplot, 6
  lower.tri, 24

  makecmap, 4–6, 9, 13–15, 16, 21
  matapply, 18, 23

  order.dendrogram, 10

  par, 10
  pdf, 21
  plot, 2, 24
  plot.dendrogram, 10

27
INDEX

png, 21
polygon, 12
pretty, 17, 19, 20
prettyInt, 17, 19
prettyLog, 17
prettyLog (prettyInt), 19
rainbow, 8, 17
rainbow2 (ColorPalettes), 7
rasterImage, 2, 3
rect, 12
savemat, 21
squashgram, 19, 22
tapply, 19
trianglegram, 13, 23
upper.tri, 24
vkey, 6
vkey (hkey), 15
xycoords, 12, 14
xyz.coords, 18, 23, 25, 26
xyzmat.coords, 3, 6, 18, 25, 26
xyzmat2xyz, 26