Package ‘trapezoid’

October 14, 2022

Version 2.0-2

Date 2022-06-09

Title The Trapezoidal Distribution

Depends R (>= 2.12.0)

Suggests ggplot2, plyr

Description The trapezoid package provides 'dtrapezoid', 'ptrapezoid', 'qtrapezoid', and 'rtrapezoid' functions for the trapezoidal distribution.

License GPL-3

Collate 'dtrapezoid.R' 'ptrapezoid.R' 'qtrapezoid.R' 'rtrapezoid.R'

NeedsCompilation yes

Author Jeremy Thoms Hetzel [aut, cre]

Maintainer Jeremy Thoms Hetzel <jthetzel@gmail.com>

Repository CRAN

Date/Publication 2022-06-09 16:50:02 UTC

R topics documented:

- trapezoid

Index

- trapezoid

Description

Density function, distribution function, quantile function, and random generation for the trapezoidal distribution with minimum equal to ‘min’, lower mode equal to ‘mode1’, upper mode equal to ‘mode2’, and maximum equal to ‘max’. For the generalized trapezoidal distribution, ‘n1’, ‘n3’, and ‘alpha’ may optionally be specified.
Usage

dtrapezoid(x, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2, n3 = 2, alpha = 1, log = FALSE)
ptrapezoid(q, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2, n3 = 2, alpha = 1, lower.tail = TRUE, log.p = FALSE)
qtrapezoid(p, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2, n3 = 2, alpha = 1, lower.tail = TRUE, log.p = FALSE)
rtrapezoid(n, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2, n3 = 2, alpha = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.
min vector of minima.
mode1 vector of lower modes.
mode2 vector of upper modes.
max vector of maxima.
n1 vector of growth parameters.
n3 vector of decay parameters.
alpha vector of boundary ratio parameters.
log, log.p logical; if ‘TRUE’, probabilities ‘p’ are given as ‘log(p)’.
lower.tail logical; if ‘TRUE’ (default), probabilities are ‘P[X <= x]’, otherwise, ‘P[X > x]’.

Details

The generalized trapezoidal distribution is described by van Dorp and Kotz (2003) and van Dorp and colleagues (2007). With ‘n1’, ‘n3’, and ‘alpha’ equal to the default values of 2, 2, and 1, respectively, the distribution shape is of a quadrilateral trapezoid. Altering ‘n1’, ‘n3’, or ‘alpha’ changes the growth rate, decay rate, and boundary ratio parameters, respectively, as demonstrated in the examples below.

Value

‘dtrapezoid’ gives the density function, ‘ptrapezoid’ gives the distribution function, ‘qtrapezoid’ gives the quantile function, and ‘rtrapezoid’ generates random deviates.

Author(s)

Jeremy Thoms Hetzel <jthetzel@gmail.com>
trapezoid

References

See Also

Distributions for standard distributions.

Examples

```r
## Plot default trapezoid distribution
curve(dtrapezoid(x, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1,
               n1 = 2, n3 = 2, alpha = 1), from = 0, to = 1)

## Plot triangular trapezoid distribution
curve(dtrapezoid(x, min = 0, mode1 = 1/2, mode2 = 1/2, max = 1,
               n1 = 2, n3 = 2, alpha = 1), from = 0, to = 1)

## Explore effects of n1, n3, and alpha parameters
# plyr and ggplot2 are required for this example
require(plyr)
require(ggplot2)

x <- seq(from = 0, to = 1, by = 0.01)

# Create a list of arguments, varying n1, n3, and alpha
arguments <- list()
arguments[['A']] <- list(x = x, n1 = 2, n3 = 2, alpha = 0.8)
arguments[['B']] <- list(x = x, n1 = 1.5, n3 = 1.5, alpha = 1)
arguments[['C']] <- list(x = x, n1 = 2.5, n3 = 2.5, alpha = 1.5)
arguments[['D']] <- list(x = x, n1 = 1.5, n3 = 2.5, alpha = 0.5)
arguments[['E']] <- list(x = x, n1 = 2.5, n3 = 1.5, alpha = 1)
arguments[['F']] <- list(x = x, n1 = 0.5, n3 = 0.5, alpha = 1.5)
arguments[['G']] <- list(x = x, n1 = 1.5, n3 = 0.5, alpha = 0.5)
arguments[['H']] <- list(x = x, n1 = 2.5, n3 = 0.5, alpha = 1)
arguments[['I']] <- list(x = x, n1 = 0.5, n3 = 1.5, alpha = 1.5)
arguments[['J']] <- list(x = x, n1 = 0.5, n3 = 2.5, alpha = 0.5)

# Calculate the distributions
plot.data <- ldply(arguments, function(z)
    {
        x <- z$x
        density <- dtrapezoid(x = z$x, min = 0, mode1 = 0.2, mode2 = 0.8,
                                max = 1, n1 = z$n1, n3 = z$n3, alpha = z$alpha)
    }

    # Plot the distributions
    curve(density, from = 0, to = 1)

    # Add legends
    legend("topright", legend = names(z), fill = 1:6, bty = "n")
}
```
args <- paste("n1 = ", z$n1, ", n3 = ", z$n3, ", alpha = ", z$alpha, sep="", collapse="")
out <- data.frame(x, density, args)
)

Create labels for later use in displaying the arguments on the plots
plot.data$label <- paste(plot.data$id, ": ", plot.data$args, sep="")

Create plots
generalizedTrapezoids <- ggplot(data = plot.data, aes(x = x, y = density)) +
 geom_line() + theme_bw() +
 facet_wrap(~label, ncol = 2, scales = "free_y")
print(generalizedTrapezoids)
Index

* distribution
 trapezoid, 1

Distributions, 3
ptrapezoid (trapezoid), 1
qtrapezoid (trapezoid), 1
rtrapezoid (trapezoid), 1
Trapezoid (trapezoid), 1
trapezoid, 1