Package ‘xoi’

March 22, 2023

Version 0.72
Date 2023-03-21
Depends R (>= 2.10.1), qtl
Title Tools for Analyzing Crossover Interference
Author Karl W Broman [aut, cre] (<https://orcid.org/0000-0002-4914-6671>), Il-Youp Kwak [ctb] (<https://orcid.org/0000-0002-7117-7669>)
Maintainer Karl W Broman <broman@wisc.edu>
Description Analysis of crossover interference in experimental crosses, particularly regarding the gamma model. See, for example, Broman and Weber (2000) <doi:10.1086/302923>.
Imports stats, utils
Suggests devtools, roxygen2, testthat
License GPL-3
URL https://github.com/kbroman/xoi
BugReports https://github.com/kbroman/xoi/issues
RoxygenNote 7.1.0
Encoding UTF-8
ByteCompile true
LazyData true
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-03-22 12:40:02 UTC

R topics documented:

bssbsb ... 2
chiasma ... 3
coincidence ... 5
convertxoloc ... 6
Description

Data from two densely genotyped backcrosses.

Format

An object of class cross. See qtl::read.cross() for details.

Details

There are 94 individuals from each of two interspecific backcross: (C57BL/6J × M. spretus) × C57BL/6J and (C57BL/6J × SPRET/Ei) × SPRET/Ei. They were typed on 1372 and 4913 genetic markers, respectively, with 904 markers in common.

These data are from September, 2000. Updated data are available.

Source

Lucy Rowe, Jackson Laboratory
References

Examples

```r
data(bssbsb)
summary(bssbsb)
## Not run: plot(bssbsb)
```

chiasma

Estimate chiasma distribution from crossover counts

Description
Fit several models, with an assumption of no chromatid interference, to crossover count data to obtain fitted distributions of the number of chiasmata.

Usage

```r
chiasma(
  xo,
  max.chiasma = max(xo) * 2 + 5,
  n.iter = 10000,
  tol = 0.000001,
  verbose = FALSE
)
```

Arguments

- `xo` Vector of non-negative integers; the number of crossovers in a set of meiotic products.
- `max.chiasma` Maximum number of chiasmata to allow.
- `n.iter` Maximum number of iterations in the EM algorithm.
- `tol` Tolerance for convergence of the EM algorithm.
- `verbose` If TRUE, print number of iterations for each of the 4 models at the end.

Details
We use R’s `stats::integrate()` function for numerical integrals, `stats::optimize()` for optimizing the likelihood, and `stats::uniroot()` for identifying the endpoints of the likelihood support interval.
Value

A list with three components.

First, a matrix containing the observed distribution of the numbers of crossovers, followed by the fitted distributions under the Poisson model, the truncated Poisson model (assuming an obligate chiasma), the obligate chiasma model, and the freely varying model. In all cases we assume no chromatid interference.

Second, a matrix containing the estimated distributions of the number of chiasmata on the four-strand bundle for the above four models.

Third, the estimated average number of crossovers under the Poisson and truncated Poisson models.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

`fitGamma()`, `qtl::fitstahl()` `countxo()`

Examples

data(bssbsb)

estimated number of crossovers on chr 1
nxo <- countxo(bssbsb, chr=1)

estimate chiasma distribution
Not run: chiasma(nxo)
coincidence

Estimate coincidence function

Description

Estimate coincidence function for a chromosome.

Usage

coincidence(cross, chr = NULL, window = 5, ncalc = 500)

Arguments

cross Cross object; must be a backcross. See qtl::read.cross() for format details.
chr Chromosome to consider (only one is allowed). If NULL, the first chromosome is considered.
window Window size
ncalc Total number of points for calculations.

Value

Data frame with columns distance and coincidence. The input argument window is kept as an attribute.

Author(s)

Il youp Kwak

See Also

intensity(), est.coi()

Examples

map1 <- sim.map(103, n.mar=104, anchor=TRUE, include.x=FALSE, eq=TRUE)
x <- sim.cross(map1, n.ind=2000, m=6, type="bc")

out <- coincidence(x, ncalc=101)
plot(out, type="l", lwd=2, ylim=c(0, max(out[,2])))
convertxoloc

Convert format of crossover locations data

Description

Convert the format of data on crossover locations to that needed for the function `fitGamma`.

Usage

```r
convertxoloc(breaks)
```

Arguments

- `breaks`: A list of crossover locations, as output by `find.breaks()` or `simStahl()`.

Value

A data frame with two columns: the inter-crossover and crossover-to chromosome end differences ("distance") and indicators of censoring type ("censor"), with 0 = distance between crossovers, 1=start of chromosome to first crossover, 2 = crossover to end of chromosome, and 3 = whole chromosome.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

- `find.breaks()`, `fitGamma()`, `simStahl()`

Examples

```r
data(bssbsb)

# crossover locations on chromosome 1
xoloc1 <- convertxoloc(find.breaks(bssbsb, chr=1))

# crossover locations on all chromosomes
xoloc <- convertxoloc(find.breaks(bssbsb))
```
countxo

Estimate number of crossovers

Description

Estimate the number of crossovers in each meiosis in a backcross.

Usage

countxo(cross, chr = NULL)

Arguments

cross An object of class cross. (This must be a backcross.) See qtl::read.cross() for details.

chr Optional set of chromosomes across which to count crossovers. If NULL, the total number of crossovers, genome-wide, is counted.

Details

This works only a backcross. We use the internal function (within R/qtl) locate.xo.

Value

A vector with the estimated number of crossovers for each individual.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

find.breaks()

Examples

data(bssbsb)

estimated number of crossovers on chr 1
nxo <- countxo(bssbsb, chr=1)

estimated number of crossovers genome-wide
nxo <- countxo(bssbsb)
distance.given.two

Distance between crossovers given there are two

Description

Calculates the density of the distance between the crossovers on a meiotic product, given that there are precisely two crossovers, for the gamma model.

Usage

distance.given.two(
 nu,
 L = 103,
 x = NULL,
 n = 400,
 max.conv = 25,
 integr.tol = 0.00000001,
 max.subd = 1000,
 min.subd = 10
)

Arguments

nu
The interference parameter in the gamma model.

L
The length of the chromosome in cM.

x
If specified, points at which to calculate the density.

n
Number of points at which to calculate the density. The points will be evenly distributed between 0 and L. Ignored if x is specified.

max.conv
Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.

integr.tol
Tolerance for convergence of numerical integration.

max.subd
Maximum number of subdivisions in numerical integration.

min.subd
Minimum number of subdivisions in numerical integration.

Details

Let \(f(x; \nu)\) denote the density of a gamma random variable with parameters shape=\(\nu\) and rate=\(2\nu\), and let \(f_k(x; \nu)\) denote the density of a gamma random variable with parameters shape=\(k\nu\) and rate=\(2\nu\).

The distribution of the distance from one crossover to the next is \(f^*(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu)/2^k\).

The distribution of the distance from the start of the chromosome to the first crossover is \(g^*(x; \nu) = 1 - F^*(x; \nu)\) where \(F^*\) is the cdf of \(f^*\).

We calculate the distribution of the distance between crossovers on a product with two crossovers by first calculating the joint distribution of the location of the two crossovers, given that they both occur before L and the third occurs after L, and then integrating out the location of the first crossover.
Value

A data frame with two columns: \(x \) is the distance (between 0 and \(L \), in cM) at which the density was calculated and \(f \) is the density.

Warning

We sometimes have difficulty with the numerical integrals. You may need to use large \(\text{min.subd} \) (e.g. 25) to get accurate results.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

location.given.one(), first.given.two(), joint.given.two(), ioden(), firstden(), xoprob(), gammacoi()

Examples

```r
def <- distance.given.two(4.3, L=200, n=101)
lines(def, col="red", lwd=2)

## Not run:
def <- distance.given.two(7.6, L=200, n=101)
lines(def, col="green", lwd=2)
## End(Not run)
```
est.coi

Estimate the coincidence function

Description

Estimate the coincidence function from backcross data.

Usage

est.coi(cross, chr = NULL, pos = NULL, window = 0, fill.method = c("imp", "argmax"), error.prob = 0.0000000001, map.function = c("haldane", "kosambi", "c-f", "morgan")
)

Arguments

cross Cross object; must be a backcross. See qtl::read.cross() for format details.
chr Chromosome to consider (only one is allowed). If NULL, the first chromosome is considered.
pos If provided, these are used as the marker positions. (This could be useful if you want to do things with respect to physical distance.)
window Window size used to smooth the estimates.
fill.method Method used to impute missing data.
error.prob Genotyping error probability used in imputation of missing data.
map.function Map function used in imputation of missing data.

Details

The coincidence function is the probability of a recombination event in both of two intervals, divided by the product of the two recombination fractions. We estimate this as a function of the distance between the two intervals.

Note that we first call qtl::fill.geno() to impute any missing genotype data.

Value

A data.frame containing the distance between intervals and the corresponding estimate of the coincidence. There are actually two columns of estimates of the coincidence. In the first estimate, we take a running mean of each of the numerator and denominator and then divide. In the second estimate, we first take a ratio and then take a running mean.
est.coi.um

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

`gammacoi()`, `stahlcoi()`, `kfunc()`

Examples

```r
map1 <- sim.map(103, n.mar=104, anchor=TRUE, include.x=FALSE, eq=TRUE)
x <- sim.cross(map1, n.ind=2000, m=6, type="bc")

out <- est.coi(x, window=5)
plot(coi1 ~ d, data=out, type="l", lwd=2, col="blue")
lines(coi2 ~ d, data=out, lwd=2, col="green")
lines(gammacoi(7), lwd=2, col="red", lty=2)
```

Description

Estimate the coincidence as a function of micron distance, with data on XO locations in microns plus SC length in microns.

Usage

```r
est.coi.um(
    xoloc,
    sclength,
    centromeres = NULL,
    group = NULL,
    intwindow = 0.05,
    coiwindow = NULL,
    intloc = NULL,
    coiloc = NULL
)
```
Arguments

- `xoloc`: list of crossover locations (in microns) for each of several oocytes or spermatoocytes.
- `sclength`: vector of SC lengths (in microns).
- `centromeres`: vector of centromere locations (in microns). If NULL, taken to be `sclength/2`.
- `group`: nominal vector of groups; the intensity function of the crossover process will be estimated separately for each group, but a joint coincidence function will be estimated.
- `intwindow`: Window size used to smooth the estimated intensity function.
- `coiwindow`: Window size used to smooth the estimated coincidence function.
- `intloc`: Locations at which to estimate the intensity function, in the interval [0,1]
- `coiloc`: Values at which the coincidence function is to be estimated, in microns, less than `max(sclength)`

Details

The coincidence function is the probability of a recombination event in both of two intervals, divided by the product of the two intensity function for the two intervals.

We estimate this as a function of the distance between the two intervals in microns, taking account of varying SC lengths.

Value

A list containing the estimated coincidence (as a matrix with two columns, micron distance and corresponding estimated coincidence) and the estimated intensity functions (as a matrix with `length(group)+1` columns (the locations at which the intensity functions were estimated followed by the group-specific estimates).

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

- `gammacoi()`, `stahlcoi()`, `kfunc()`, `est.coi()`

Examples

```r
# simple example using data simulated with no crossover interference
cells <- 1000
L <- 2  # chr lengths in Morgans (constant here)
nchi <- rpois(ncells, 2*L)  # number of chiasmata
xoloc <- lapply(nchi, function(a) runif(a, 0, L))  # chi locations
coi <- est.coi.um(xoloc, rep(L, ncells))

# plot estimated coincidence and intensity
# (intensity is after scaling chromosome to length 1)
```
est.recrate

par(mfrow=c(2,1), las=1)
plot(coi$coincidence, type="l", lwd=2, ylim=c(0, max(coi$coincidence[,2])))
plot(coi$intensity, type="l", lwd=2, ylim=c(0, max(coi$intensity[,2])))

est.recrate

Estimate recombination rate

Description

Obtain a smoothed estimate of the recombination rate along a chromosome, using the cM and Mbp position of markers.

Usage

```r
est.recrate(genmap, phymap, pos = NULL, window = 5)
```

Arguments

- **genmap**: Vector of cM positions of markers, or a list of such vectors.
- **phymap**: Vector of Mbp positions of markers, or a list of such vectors; same length as genmap.
- **pos**: Vector of positions at which the recombination rate should be estimated, or a list of such vectors. If NULL, we use the physical marker positions plus a grid with 4 positions per Mbp.
- **window**: Length of sliding window (in Mbp).

Details

We assume constant recombination rate within each marker interval.

Value

A data.frame containing the positions and estimate recombination rates.

Author(s)

Karl W Broman, `<broman@wisc.edu>`

See Also

- `est.coi()`, `intensity()`
Examples

```r
# create equally-spaced map
pmap <- sim.map(100, n.mar=51, anchor=TRUE, include.x=FALSE, eq.spacing=TRUE)

# simulate cross
x <- sim.cross(pmap, type="bc", n.ind=501)

# estimate map for that cross
emap <- est.map(x)

# empirical estimate of recombination rate
rr <- est.recrate(emap[[1]], pmap[[1]], window=5)
plot(rr, type="l", lwd=2)
```

find.breaks

Estimate crossover locations

Description

Estimate the locations of crossovers in a backcross.

Usage

```r
find.breaks(cross, chr = NULL)
```

Arguments

- `cross` An object of class `cross`. (This must be a backcross, RIL, or intercross.) See `qtl::read.cross()` for details.
- `chr` Optional set of chromosomes on which to look for crossovers. If NULL, all chromosomes are considered.

Details

This works only a backcross, RIL, or intercross. We use the function `qtl::locateXO()` in R/qtl. Crossovers are estimated to be at the midpoint of the interval between the nearest flanking typed markers.

Value

If only one chromosome is considered, this is a list with one component for each individual. If multiple chromosomes were considered, this is a list with one element for each chromosome, each of which is a list with one element for each individual, as above.

For backcrosses and RIL, the componenets for the individuals are `numeric(0)` if there were no crossovers or a vector giving the crossover locations. The length of the chromosome (in cM) is saved as an attribute. (Note that the format is the same as the output of `simStahl()`.)
For an intercross, the components for the individuals are themselves lists with all possible allocations of the crossovers to the two meiotic products; each component of this list is itself a list with two components, corresponding to the two meiotic products.

Author(s)
Karl W Broman, <broman@wisc.edu>

See Also
convertxoloc(), fitGamma(), simStahl()

Examples

data(bssbsb)

crossover locations on chromosome 1
xoloc1 <- find.breaks(bssbsb, chr=1)

crossover locations on all chromosomes
xoloc <- find.breaks(bssbsb)

first.given.two

Location of first crossover given there are two

Description
Calculates the density of the location of the first crossover on a random meiotic product, given that there are precisely two crossovers, for the gamma model.

Usage

first.given.two(
 nu,
 L = 103,
 x = NULL,
 n = 400,
 max.conv = 25,
 integr.tol = 0.00000001,
 max.subd = 1000,
 min.subd = 10
)
Arguments

nu: The interference parameter in the gamma model.
L: The length of the chromosome in cM.
x: If specified, points at which to calculate the density.
n: Number of points at which to calculate the density. The points will be evenly distributed between 0 and L. Ignored if x is specified.
max.conv: Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
integr.tol: Tolerance for convergence of numerical integration.
max.subd: Maximum number of subdivisions in numerical integration.
min.subd: Minimum number of subdivisions in numerical integration.

Details

Let $f(x; \nu)$ denote the density of a gamma random variable with parameters shape=ν and rate=2ν, and let $f_k(x; \nu)$ denote the density of a gamma random variable with parameters shape=$k\nu$ and rate=2ν.

The distribution of the distance from one crossover to the next is $f^*(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu)/2^k$.

The distribution of the distance from the start of the chromosome to the first crossover is $g^*(x; \nu) = 1 - F^*(x; \nu)$ where F^* is the cdf of f^*.

We calculate the distribution of the location of the first crossover in a product with two crossovers by calculating the joint distribution of the location of the two crossovers, given that they both occur before L and the third occurs after L, and then integrating out the location of the second crossover.

Value

A data frame with two columns: x is the location (between 0 and L, in cM) at which the density was calculated and f is the density.

Warning

We sometimes have difficulty with the numerical integrals. You may need to use large min.subd (e.g. 25) to get accurate results.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

firstden

Distance to a crossover

Description

Calculates the density of the distance from an arbitrary point to the next crossover, for the gamma model.

Usage

```
firstden(nu, L = 103, x = NULL, n = 400, max.conv = 25)
```

Arguments

- **nu**: The interference parameter in the gamma model.
- **L**: Maximal distance (in cM) at which to calculate the density. Ignored if `x` is specified.
- **x**: If specified, points at which to calculate the density.
- **n**: Number of points at which to calculate the density. The points will be evenly distributed between 0 and L. Ignored if `x` is specified.
- **max.conv**: Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.

Examples

```
f1 <- first.given.two(1, L=200, n=101)
plot(f1, type="l", lwd=2, las=1,
     ylim=c(0,0.011), xaxs="i", xaxt="i", xlim=c(0,200))

f2 <- first.given.two(2.6, L=200, n=101)
lines(f2, col="blue", lwd=2)

## Not run:
f3 <- first.given.two(4.3, L=200, n=101)
lines(f3, col="red", lwd=2)

f4 <- first.given.two(7.6, L=200, n=101)
lines(f4, col="green", lwd=2)

## End(Not run)
```

See Also

- `location.given.one()`, `distance.given.two()`, `joint.given.two()`, `ioden()`, `firstden()`, `xoprob()`, `gammacoi()`
Details

Let \(f(x; \nu) \) denote the density of a gamma random variable with parameters \(\text{shape}=\nu \) and \(\text{rate}=2\nu \), and let \(f_k(x; \nu) \) denote the density of a gamma random variable with parameters \(\text{shape}=k\nu \) and \(\text{rate}=2\nu \).

The distribution of the distance from one crossover to the next is \(f^*(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu)/2^k \).

The distribution of the distance from an arbitrary point to the first crossover is \(g^*(x; \nu) = 1 - F^*(x; \nu) \) where \(F^* \) is the cdf of \(f^* \).

Value

A data frame with two columns: \(x \) is the distance (between 0 and \(L \), in cM) at which the density was calculated and \(f \) is the density.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

`location.given.one()`, `first.given.two()`, `distance.given.two()`, `joint.given.two()`, `ioden()`, `xoprob()`, `gammacoi()`

Examples

```r
f1 <- firstden(1, L=200, n=201)
plot(f1, type="l", lwd=2, las=1,
     ylim=c(0,0.012), yaxs="i", xaxs="i", xlim=c(0,200))

f2 <- firstden(2.6, L=200, n=201)
lines(f2, col="blue", lwd=2)

f3 <- firstden(4.3, L=200, n=201)
lines(f3, col="red", lwd=2)

f4 <- firstden(7.6, L=200, n=201)
lines(f4, col="green", lwd=2)
```
fitGamma

Fit Gamma model

Description

Fit the gamma model for crossover interference to data on crossover locations.

Usage

fitGamma(
 d,
 censor = NULL,
 nu = NULL,
 lo = NULL,
 hi = NULL,
 se = FALSE,
 supint = FALSE,
 rescale = FALSE,
 drop = 1.5,
 tol = 0.00001,
 maxit = 1000,
 max.conv = 25,
 integr.tol = 0.0000001,
 max.subd = 1000,
 min.subd = 10,
 h = 0.1,
 hstep = 1.5
)

Arguments

d A vector of inter-crossover distances in cM. This should include distances from start of chromosome to first crossover, last crossover to end of chromosome, and chromosome length, if there are no crossovers. Alternatively, this may be a matrix with the first column being the distances and second column being the censoring types (censor).

censor A vector of the same length as d, indicating the censoring type for each distance. 0 = uncensored, 1 = right-censored, 2 = initial crossover on chromosome, 3 = whole chromosome.

nu A vector of interference parameters (ν) at which to calculate the log likelihood. If NULL, lo and hi must be specified.

lo If nu is unspecified, lo indicates the lower value of the interval in which to search for the MLE. If supint=TRUE, this should be below the lower limit of the support interval.
hi

If \(\nu \) is unspecified, \(hi \) indicates the upper value of the interval in which to search for the MLE. If \(supint=TRUE \), this should be above the upper limit of the support interval.

se

If TRUE and \(\nu \) was not specified, an estimated SE (based on the second derivative of the log likelihood) is estimated.

supint

If TRUE and \(\nu \) was not specified, a likelihood support interval is calculated, with \(drop \) being the amount to drop in log (base 10).

rescale

If TRUE and \(\nu \) was specified, re-scale the log likelihoods so that the maximum is at 0.

drop

If \(supint \) was specified, this indicates the amount to drop in log (base 10) for the likelihood support interval.

tol

Tolerance for convergence to calculate the likelihood, SE, and likelihood support interval.

maxit

Maximum number of iterations in estimating the SE and likelihood support interval.

max.conv

Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.

integr.tol

Tolerance for convergence of numerical integration.

max.subd

Maximum number of subdivisions in numerical integration.

min.subd

Minimum number of subdivisions in numerical integration.

h

Step used in estimating the second derivative of the log likelihood.

hstep

factor by which \(h \) is decreased in each iteration of the estimation of the second derivative of the log likelihood.

Details

We use R's \texttt{stats::integrate()} function for numerical integrals, \texttt{stats::optimize()} for optimizing the likelihood, and \texttt{stats::uniroot()} for identifying the endpoints of the likelihood support interval.

Value

If \(\nu \) is specified, we return a data frame with two columns: \(\nu \) and the corresponding log (base e) likelihood. If \(rescale=TRUE \), the maximum log likelihood is subtracted off, so that its maximum is at 0.

If \(lo \) and \(hi \) is specified, the output contains a single row with the MLE of \(\nu \) and the corresponding log likelihood. If \(se=TRUE \), we also include the estimated SE. If \(supint=TRUE \), we include two additional rows with the lower and upper limits of the likelihood support interval.

Author(s)

Karl W Broman, <broman@wisc.edu>
References

See Also

`qtl::fitstahl()`

Examples

data(bssbsb)

xodist <- convertxoloc(find.breaks(bssbsb, chr=1))

plot a rough log likelihood curve
Not run: out <- fitGamma(xodist, nu=seq(1, 19, by=2))
plot(out, type="l", lwd=2)

get MLE
Not run: mle <- fitGamma(xodist, lo=8, hi=12)

mle

abline(v=mle[1], h=mle[2], col="blue", lty=2)

get MLE and SE
Not run: mle <- fitGamma(xodist, lo=9.5, hi=10.5, se=TRUE)

mle

get MLE and 10^1.5 support interval
Not run: int <- fitGamma(xodist, lo=1, hi=20, supint=TRUE)

int

abline(v=mle[2:3,1], h=mle[2:3,2], col="red", lty=2)
Description

Fit the Stahl model for crossover interference to data on crossover locations.

Usage

```r
fitStahl(
  xoloc,  # A list of crossover locations (in cM), each component being a vector of locations for a different meiotic product.
  chrlen = NULL,  # Chromosome length (in cM), either of length 1 or the same length as xoloc.
  nu = c(1, 20),  # Interference parameter (ν). This should be a pair of values to be used as endpoints to first do a 1-dimensional optimization with p = 0.
  p = 0.02,  # Starting value for the proportion of crossovers from the no interference pathway, for the 2-dimensional optimization.
  max.conv = 25,  # Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
  integr.tol = 0.00000001,  # Tolerance for convergence of numerical integration.
  max.subd = 1000,  # Maximum number of subdivisions in numerical integration.
  min.subd = 10,  # Minimum number of subdivisions in numerical integration.
  verbose = TRUE,  # If TRUE, print tracing information. If "..." includes control, this is ignored.
  ...)  # Further arguments sent to stats::optim()
)
```

Arguments

- `xoloc` A list of crossover locations (in cM), each component being a vector of locations for a different meiotic product.
- `chrlen` Chromosome length (in cM), either of length 1 or the same length as `xoloc`.
- `nu` Interference parameter (ν). This should be a pair of values to be used as endpoints to first do a 1-dimensional optimization with `p = 0`.
- `p` Starting value for the proportion of crossovers from the no interference pathway, for the 2-dimensional optimization.
- `max.conv` Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
- `integr.tol` Tolerance for convergence of numerical integration.
- `max.subd` Maximum number of subdivisions in numerical integration.
- `min.subd` Minimum number of subdivisions in numerical integration.
- `verbose` If TRUE, print tracing information. If "..." includes control, this is ignored.

Details

We first use `stats::optimize()` to find the MLE with the contraint `p=0`, followed by use of `stats::optim()` to do a 2-dimensional optimization for the MLEs of the pair.
Value
A vector with the estimates of ν (interference parameter) and p (proportion of crossovers coming from the no interference pathway), the maximized log likelihood, the estimate of ν with p constrained to be 0, the maximized log likelihood in this case, and the log likelihood ratio for comparing the model with p allowed to vary freely versus constrained to be 0. (Note that it’s the natural log of the likelihood ratio, and not twice that.)

Author(s)
Karl W Broman, <broman@wisc.edu>

References

See Also
fitGamma(), stahlLoglik(), simStahl()

Examples

data(bssbsb)

xoloc <- find.breaks(bssbsb, chr=1)
L <- attr(xoloc, "L")

get MLE (limiting maximum iterations to 10, just for speed in this example)
Not run: mle <- fitStahl(xoloc, L, nu=c(9, 12), control=list(maxit=10))
Arguments

nu The interference parameter in the gamma model.
L Maximal distance (in cM) at which to calculate the density. Ignored if \textit{x} is specified.
\textit{x} If specified, points at which to calculate the density.
n Number of points at which to calculate the density. The points will be evenly distributed between 0 and \textit{L}. Ignored if \textit{x} is specified.
max.conv Maximum limit for summation in the convolution. This should be greater than the maximum number of chiasmata on the 4-strand bundle.

Details

Let \(f(x; \nu) \) denote the density of a gamma random variable with parameters shape=\(\nu \) and rate=\(2\nu \), and let \(f_k(x; \nu) \) denote the density of a gamma random variable with parameters shape=\(k\nu \) and rate=\(2\nu \).

The coincidence function for the gamma model is \(C(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu)/2 \).

Value

A data frame with two columns: \textit{x} is the distance (between 0 and \textit{L}, in cM) at which the coincidence was calculated and coincidence.

Author(s)

Karl W Broman, \texttt{<broman@wisc.edu>}

References

See Also

\texttt{stahlcoi()}, \texttt{location.given.one()}, \texttt{first.given.two()}, \texttt{distance.given.two()}, \texttt{joint.given.two()}, \texttt{ioden()}, \texttt{firstden()}, \texttt{xoprob()}

Examples

\begin{verbatim}
f1 <- gammaco(1, L=200)
plot(f1, type="l", lwd=2, las=1,
 ylim=c(0,1.25), yaxs="i", xaxs="i", xlim=c(0,200))
\end{verbatim}
intensity

f2 <- gammacoi(2.6, L=200)
lines(f2, col="blue", lwd=2)

f3 <- gammacoi(4.3, L=200)
lines(f3, col="red", lwd=2)

f4 <- gammacoi(7.6, L=200)
lines(f4, col="green", lwd=2)

intensity | Estimate intensity function

Description

Estimate intensity function for a chromosome.

Usage

```r
test <- intensity(cross, chr = NULL, window = 2.5, ncalc = 500)
```

Arguments

- **cross**: Cross object; must be a backcross. See `qt1::read.cross()` for format details.
- **chr**: Chromosome to consider (only one is allowed). If NULL, the first chromosome is considered.
- **window**: Window size
- **ncalc**: Total number of points for calculations.

Value

Data frame with columns position and intensity. The input argument window is kept as an attribute.

Author(s)

Il youp Kwak

See Also

- `coincidence()`
Examples

```r
map1 <- sim.map(103, n.mar=104, anchor=TRUE, include.x=FALSE, eq=TRUE)
x <- sim.cross(map1, n.ind=2000, m=6, type="bc")
out <- intensity(x)
plot(out, type="l", lwd=2, ylim=c(0, max(out[,2])))
```

ioden

Distance between crossovers

Description

Calculates the density of the distance from a given crossover to the next crossover, for the gamma model.

Usage

`ioden(nu, L = 103, x = NULL, n = 400, max.conv = 25)`

Arguments

- `nu`: The interference parameter in the gamma model.
- `L`: Maximal distance (in cM) at which to calculate the density. Ignored if `x` is specified.
- `x`: If specified, points at which to calculate the density.
- `n`: Number of points at which to calculate the density. The points will be evenly distributed between 0 and `L`. Ignored if `x` is specified.
- `max.conv`: Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.

Details

Let $f(x; \nu)$ denote the density of a gamma random variable with parameters shape=ν and rate=2ν, and let $f_k(x; \nu)$ denote the density of a gamma random variable with parameters shape=$k\nu$ and rate=2ν.

The distribution of the distance from one crossover to the next is $f^*(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu)/2^k$.

Value

A data frame with two columns: `x` is the distance (between 0 and `L`, in cM) at which the density was calculated and `f` is the density.
joint.given.two

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

location.given.one(), first.given.two(), distance.given.two(), joint.given.two(), firstden(), xoprob(), gammacoi()

Examples

```r
f1 <- ioden(1, L=200, n=201)
plot(f1, type="l", lwd=2, las=1,
     ylim=c(0,0.014), yaxs="i", xaxs="i", xlim=c(0,200))

f2 <- ioden(2.6, L=200, n=201)
lines(f2, col="blue", lwd=2)

f3 <- ioden(4.3, L=200, n=201)
lines(f3, col="red", lwd=2)

f4 <- ioden(7.6, L=200, n=201)
lines(f4, col="green", lwd=2)
```

joint.given.two

Crossover locations given there are two

Description

Calculates the joint density of the crossover locations on a random meiotic product, given that there are precisely two crossovers, for the gamma model.
Usage

```
joint.given.two(
  nu,
  L = 103,
  x = NULL,
  y = NULL,
  n = 20,
  max.conv = 25,
  integr.tol = 0.00000001,
  max.subd = 1000,
  min.subd = 10
)
```

Arguments

- **nu**: The interference parameter in the gamma model.
- **L**: The length of the chromosome in cM.
- **x**: If specified, locations of the first crossover.
- **y**: If specified, locations of the second crossover.
- **n**: Number of points at which to calculate the density. The points will be evenly distributed between 0 and L. Ignored if x and y are specified.
- **max.conv**: Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
- **integr.tol**: Tolerance for convergence of numerical integration.
- **max.subd**: Maximum number of subdivisions in numerical integration.
- **min.subd**: Minimum number of subdivisions in numerical integration.

Details

Let \(f(x; \nu) \) denote the density of a gamma random variable with parameters shape=\(\nu \) and rate=\(2\nu \), and let \(f_k(x; \nu) \) denote the density of a gamma random variable with parameters shape=\(k\nu \) and rate=\(2\nu \).

The distribution of the distance from one crossover to the next is \(f^*(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu) / 2^k \).

The distribution of the distance from the start of the chromosome to the first crossover is \(g^*(x; \nu) = 1 - F^*(x; \nu) \) where \(F^* \) is the cdf of \(f^* \).

Value

A data frame with three columns: x and y are the locations (between 0 and L, in cM) at which the density was calculated and f is the density.

Warning

We sometimes have difficulty with the numerical integrals. You may need to use large \(\text{min.subd} \) (e.g. 25) to get accurate results.
kfunc

estimate Ripley’s K function

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

`location.given.one()`, `distance.given.two()`, `first.given.two()`, `ioden()`, `firstden()`, `xoprob()`, `gammacoi()`

Examples

```r
# Calculate the distribution of the average of the crossover locations,
# given that there are two and that they are separated by 20 cM
# (for a chromosome of length 200 cM)
L <- 200
d <- 20
x <- seq(0, L-d, by=0.5)
y <- x+d
f <- joint.given.two(4.3, L=L, x, y)
f$f <- f$f / distance.given.two(4.3, L, d)$f
plot((f$x+f$y)/2, f$f, type="l", xlim=c(0, L), ylim=c(0,max(f$f)),
     lwd=2, xlab="Average location", ylab="Density")
abline(v=c(d/2,L-d/2), h=1/(L-d), lty=2, lwd=2)
```
Usage

```r
kfunc(
  x,
  d = seq(0, 100, by = 0.1),
  lengths = NULL,
  exclude = 0,
  tol = 0.000001
)
```

Arguments

- `x`: list with sorted locations of the data
- `d`: values at which to calculate the function
- `lengths`: lengths of segments studied
- `exclude`: distance to exclude
- `tol`: tolerance value

Value

data frame with `d`, `k`, and `se`

See Also

gammacoi(), stahlcoi(), coincidence()

Examples

```r
L <- 103
n <- 2000
map1 <- sim.map(L, n.mar=104, anchor=TRUE, include.x=FALSE, eq=TRUE)
x <- sim.cross(map1, n.ind=n, m=6, type="bc")

xoloc <- find.breaks(x)
d <- seq(0, 100, by=0.1)[-1]
kf <- kfunc(xoloc, d=d, lengths=rep(L, n))

plot(k ~ d, data=kf, type="n", yaxs="i", xaxs="i", las=1,
     ylim=c(0, max(kf$k + kf$se)))
polygon(c(kf$d, rev(kf$d)), c(kf$k + kf$se, rev(kf$k-kf$se)),
        border=NA, col="#add8e650")
lines(k ~ d, data=kf)
```
Description

Calculates the density of the location of the crossover on a random meiotic product, given that there is precisely one crossover, for the gamma model.

Usage

```r
location.given.one(
  nu,
  L = 103,
  x = NULL,
  n = 400,
  max.conv = 25,
  integr.tol = 0.00000001,
  max.subd = 1000,
  min.subd = 10
)
```

Arguments

- `nu`: The interference parameter in the gamma model.
- `L`: The length of the chromosome in cM.
- `x`: If specified, points at which to calculate the density.
- `n`: Number of points at which to calculate the density. The points will be evenly distributed between 0 and L. Ignored if `x` is specified.
- `max.conv`: Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
- `integr.tol`: Tolerance for convergence of numerical integration.
- `max.subd`: Maximum number of subdivisions in numerical integration.
- `min.subd`: Minimum number of subdivisions in numerical integration.

Details

Let \(f(x; \nu) \) denote the density of a gamma random variable with parameters shape=\(\nu \) and rate=\(2\nu \), and let \(f_k(x; \nu) \) denote the density of a gamma random variable with parameters shape=\(k\nu \) and rate=\(2\nu \).

The distribution of the distance from one crossover to the next is \(f^*(x; \nu) = \sum_{k=1}^{\infty} f_k(x; \nu)/2^k \).

The distribution of the distance from the start of the chromosome to the first crossover is \(g^*(x; \nu) = 1 - F^*(x; \nu) \) where \(F^* \) is the cdf of \(f^* \).

We calculate the distribution of the location of the crossover on a product with a single crossover as the convolution of \(g^* \) with itself, and then rescaled to integrate to 1 on the interval (0, L).
Value

A data frame with two columns: x is the location (between 0 and L, in cM) at which the density was calculated and f is the density.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

`first.given.two()`, `distance.given.two()`, `joint.given.two()`, `ioden()`, `firstden()`, `xoprob()`, `gammacoi()`

Examples

```r
f1 <- location.given.one(1, L=200, n=201)
plot(f1, type="l", lwd=2, las=1,
     ylim=c(0,0.006), yaxs="i", xaxs="i", xlim=c(0,200))

f2 <- location.given.one(2.6, L=200, n=201)
lines(f2, col="blue", lwd=2)

f3 <- location.given.one(4.3, L=200, n=201)
lines(f3, col="red", lwd=2)

f4 <- location.given.one(7.6, L=200, n=201)
lines(f4, col="green", lwd=2)
```

recreate2scanone
Convert recreate to scanone format

Description

Convert the result of `est.recrate()` to the format output by R/qtl’s `qtl::scanone()` function.
Usage

recreate2scanone(recrate, phymap = NULL)

Arguments

recrate A list of results from `est.recrate()
phymap A list of vectors of Mbp positions of markers

Value

A data frame with class "scanone", in the format output by `qtl::scanone()

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

`est.recrate()

Examples

pmap <- sim.map(100, n.mar=51, anchor=TRUE, include.x=FALSE, eq.spacing=TRUE)

simulate cross
x <- sim.cross(pmap, type="bc", n.ind=501)

estimate map for that cross
emap <- est.map(x)

empirical estimate of recombination rate
rr <- est.recrate(emap[[1]], pmap[[1]], window=5)

make it a list (one component per chromosome, but here just the one chromosome)
rr <- list("1"=rr)

convert to scanone output and plot
rr_scanone <- recreate2scanone(rr)
plot(rr_scanone)
Usage

```r
simStahl(
  n.sim,
  nu = 1,
  p = 0,
  L = 100,
  obligate_chiasma = FALSE,
  n.bins4start = 10000
)
```

Arguments

- `n.sim` Number of meiotic products to simulate.
- `nu` The interference parameter in the gamma model.
- `p` The proportion of chiasmata coming from the no-interference mechanism.
- `L` Chromosome length (in cM).
- `obligate_chiasma` Require an obligate chiasma (requires `nu` to be an integer; if `nu` is not an integer, it is rounded.
- `n.bins4start` We approximate the distribution of the location of the first crossover from the mechanism exhibiting interference using an even grid with this many bins. (Only if `nu` is not an integer.)

Details

The Stahl model is an extension to the gamma model, in which chiasmata occur according to two independent mechanisms. A proportion `p` come from a mechanism exhibiting no interference, and a proportion `1-p` come from a mechanism in which chiasma locations follow a gamma model with interference parameter `ν`.

Value

A vector of length `n.sim`, each element being empty (for products with no crossovers) or a vector of crossover locations, in cM. An attribute, `L`, contains the chromosome length in cM.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

stahlcoi

See Also

fitGamma(), qtl::sim.cross()

Examples

simulations with no interference, chromosome of length 80 cM
xoNI <- simStahl(100, nu=1, p=0, L=80)

simulations under gamma model with nu=7.6
xogamma <- simStahl(100, nu=7.6, p=0, L=80)

simulations under Stahl model with nu=7.6, p=0.1
xostahl <- simStahl(100, nu=7.6, p=0.1, L=80)

simulations under chi-square model with nu=11 (m=10) and obligate chiasma
xo_oblchi <- simStahl(100, nu=11, p=0, L=80, obligate_chiasma=TRUE)

simulations under Stahl model with nu=11, p=0.1, and obligate chiasma
xo_oblchi_stahl <- simStahl(100, nu=11, p=0.1, L=80, obligate_chiasma=TRUE)

stahlcoi

Coincidence function for the Stahl model

Description

Calculates the coincidence function for the Stahl model.

Usage

stahlcoi(nu, p = 0, L = 103, x = NULL, n = 400, max.conv = 25)

Arguments

nu
The interference parameter in the gamma model.

p
The proportion of chiasmata coming from the no-interference mechanism.

L
Maximal distance (in cM) at which to calculate the density. Ignored if x is specified.

x
If specified, points at which to calculate the density.

n
Number of points at which to calculate the density. The points will be evenly distributed between 0 and L. Ignored if x is specified.

max.conv
Maximum limit for summation in the convolution. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
Details

The Stahl model is an extension to the gamma model, in which chiasmata occur according to two independent mechanisms. A proportion p come from a mechanism exhibiting no interference, and a proportion $1-p$ come from a mechanism in which chiasma locations follow a gamma model with interference parameter ν.

Let $f(x; \nu, \lambda)$ denote the density of a gamma random variable with parameters shape=ν and rate=λ. The coincidence function for the Stahl model is $C(x; \nu, p) = \left[p + \sum_{k=1}^{\infty} f(x; k\nu, 2(1-p)\nu) \right] / 2$.

Value

A data frame with two columns: x is the distance (between 0 and L, in cM) at which the coincidence was calculated and coincidence.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

gammacoi(), location.given.one(), first.given.two(), distance.given.two(), ioden(), firstden(), xoprob()

Examples

```r
f1 <- stahlcoi(1, p=0, L=200)
plot(f1, type="l", lwd=2, las=1,
     ylim=c(0,1.25), yaxs="i", xaxs="i", xlab=c(0,200))

f2 <- stahlcoi(2.6, p=0, L=200)
lines(f2, col="blue", lwd=2)

f2s <- stahlcoi(2.6, p=0.1, L=200)
lines(f2s, col="blue", lwd=2, lty=2)

f3 <- stahlcoi(4.3, p=0, L=200)
lines(f3, col="red", lwd=2)

f3s <- stahlcoi(4.3, p=0.1, L=200)
lines(f3s, col="red", lwd=2, lty=2)

f4 <- stahlcoi(7.6, p=0, L=200)
lines(f4, col="green", lwd=2)
```
```r
f4s <- stahlcoi(7.6, p=0.1, L=200)
lines(f4s, col="green", lwd=2, lty=2)
```

`stahlLoglik`
Calculate log likelihood for Stahl model

Description

Calculate the log likelihood for the Stahl model for varying parameters, with data on crossover locations.

Usage

```r
stahlLoglik(
  xoloc,
  chrlen = NULL,
  nu,
  p,
  max.conv = 25,
  integr.tol = 0.00000001,
  max.subd = 1000,
  min.subd = 10
)
```

Arguments

- `xoloc`: A list of crossover locations (in cM), each component being a vector of locations for a different meiotic product.
- `chrlen`: Chromosome length (in cM), either of length 1 or the same length as `xoloc`.
- `nu`: A vector of interference parameters (ν) at which to calculate the log likelihood.
- `p`: A vector of parameter values for the proportion of crossovers from the no interference pathway.
- `max.conv`: Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
- `integr.tol`: Tolerance for convergence of numerical integration.
- `max.subd`: Maximum number of subdivisions in numerical integration.
- `min.subd`: Minimum number of subdivisions in numerical integration.

Details

If neither `nu` nor `p` has length 1, they both must have the same length. If one has length 1 and the other does not, the one with length 1 is repeated so that they both have the same length.
Value

A vector of log likelihoods.
The corresponding values of nu and p are saved as attributes.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

qtI::fitstahl()

Examples

data(bssbsb)
xoloc <- find.breaks(bssbsb, chr=1)

loglik <- stahlLoglik(xoloc, nu=4, p=c(0.05, 0.1, 0.15))

xoiversion

Installed version of R/xoi

Description

Print the version number of the currently installed version of R/xoi.

Usage

xoiversion()

Value

A character string with the version number of the currently installed version of R/xoi.

Author(s)

Karl W Broman, <broman@wisc.edu>
Examples

```r
oxionversion()
```

xoprob

Distribution of number of crossovers

Description

Calculates the probability of 0, 1, 2, or >2 crossovers for a chromosome of a given length, for the gamma model.

Usage

```r
xoprob(
  nu,
  L = 103,
  max.conv = 25,
  integr.tol = 0.00000001,
  max.subd = 1000,
  min.subd = 10
)
```

Arguments

- `nu` The interference parameter in the gamma model.
- `L` Length of the chromosome (in cM).
- `max.conv` Maximum limit for summation in the convolutions to get inter-crossover distance distribution from the inter-chiasma distance distributions. This should be greater than the maximum number of chiasmata on the 4-strand bundle.
- `integr.tol` Tolerance for convergence of numerical integration.
- `max.subd` Maximum number of subdivisions in numerical integration.
- `min.subd` Minimum number of subdivisions in numerical integration.

Details

Let \(f(x; \nu) \) denote the density of a gamma random variable with parameters \(\text{shape}=\nu \) and \(\text{rate}=2\nu \), and let \(f_k(x; \nu) \) denote the density of a gamma random variable with parameters \(\text{shape}=k\nu \) and \(\text{rate}=2\nu \).

The distribution of the distance from one crossover to the next is \(f^*(x; \nu) = \sum_{k=1}^\infty f_k(x; \nu)/2^k \).

The distribution of the distance from the start of the chromosome to the first crossover is \(g^*(x; \nu) = 1 - F^*(x; \nu) \) where \(F^* \) is the cdf of \(f^* \).

We calculate the desired probabilities by numerical integration.
Value

A vector of length 4, giving the probabilities of 0, 1, 2, or >2 crossovers, respectively, on a chromosome of length \(L \) cM.

Author(s)

Karl W Broman, <broman@wisc.edu>

References

See Also

location.given.one(), first.given.two(), distance.given.two(), joint.given.two(), ioden(), firstden(), gammacoi()

Examples

```r
xoprob(1, L=103)
xoprob(4.3, L=103)
```
Index

* datagen
 simStahl, 33
* datasets
 bssbsb, 2
* distribution
 distance.given.two, 8
 first.given.two, 15
 firstden, 17
 gammacoi, 23
 ioden, 26
 joint.given.two, 27
 location.given.one, 31
 stahlcoi, 35
 xoprob, 39
* models
 chiasma, 3
 est.coi, 10
 est.coi.um, 11
 est.recrate, 13
 fitGamma, 19
 fitStahl, 21
 kfunc, 29
 recrate2scanone, 32
 stahlLoglik, 37
* print
 xoiversion, 38
* utilities
 coincidence, 5
 convertxoloc, 6
 countxo, 7
 countxo(), 4
 distance.given.two, 8
 distance.given.two(), 17, 18, 24, 27, 29, 32, 36, 40
 est.coi, 10
 est.coi(), 5, 12, 13
 est.coi.um, 11
 est.recrate, 13
 est.recrate(), 32, 33
 find.breaks, 14
 find.breaks(), 6, 7
 first.given.two, 15
 first.given.two(), 9, 18, 24, 27, 29, 32, 36, 40
 firstden, 17
 firstden(), 9, 17, 24, 27, 29, 32, 36, 40
 fitGamma, 6, 19
 fitGamma(), 4, 6, 15, 23, 35
 fitStahl, 21
 gammacoi, 23
 gammacoi(), 9, 11, 12, 17, 18, 27, 29, 30, 32, 36, 40
 intensity, 25
 intensity(), 5, 13
 ioden, 26
 ioden(), 9, 17, 18, 24, 29, 32, 36, 40
 joint.given.two, 27
 joint.given.two(), 9, 17, 18, 24, 27, 32, 40
 kfunc, 29
 kfunc(), 11, 12
 location.given.one, 31
INDEX

location.given.one(), 9, 17, 18, 24, 27, 29, 36, 40

qtl::fill.geno(), 10
qtl::fitstahl(), 4, 21, 38
qtl::locateXO(), 14
qtl::read.cross(), 2, 5, 7, 10, 14, 25
qtl::scanone(), 32, 33
qtl::sim.cross(), 35
recreate2scanone, 32
simStahl, 33
simStahl(), 6, 14, 15, 23
stahlcoi, 35
stahlcoi(), 11, 12, 24, 30
stahlLoglik, 37
stahlLoglik(), 23
stats::integrate(), 3, 20
stats::optim(), 22
stats::optimize(), 3, 20, 22
stats::uniroot(), 3, 20
xoiversion, 38
xoprob, 39
xoprob(), 9, 17, 18, 24, 27, 29, 32, 36