Package ‘zipfR’

October 14, 2022

Type Package
Title Statistical Models for Word Frequency Distributions
Version 0.6-70
Depends R (>= 3.0.0)
Imports methods, utils, stats, graphics, grDevices, parallel
Date 2020-10-10
Author Stefan Evert <stefan.evert@fau.de>, Marco Baroni <marco.baroni@unitn.it>
Maintainer Stefan Evert <stefan.evert@fau.de>
Description Statistical models and utilities for the analysis of word frequency distributions. The utilities include functions for loading, manipulating and visualizing word frequency data and vocabulary growth curves. The package also implements several statistical models for the distribution of word frequencies in a population. (The name of this package derives from the most famous word frequency distribution, Zipf's law.)
License GPL-3
URL https://zipfR.R-Forge.R-project.org/
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-11 19:40:02 UTC

R topics documented:

zipfR-package ... 3
Baayen2001 .. 5
beta_gamma .. 6
bootstrap.confint .. 9
Brown ... 11
BrownSubsets ... 12
confint.Lmre .. 13
Dickens .. 14
estimate.model .. 15
R topics documented:

EV-EVm ... 17
EV-EVm.spc ... 18
EvertLuedeling2001 ... 19
ItaPref ... 20
LNRE ... 21
lnre ... 24
lnre.bootstrap .. 29
lnre.details .. 34
lnre.fzm .. 36
lnre.gigp .. 39
lnre.goodness.of.fit ... 41
lnre.productivity.measures 43
lnre.spc ... 45
lnre.vgc ... 46
lnre.zm ... 48
LNRE_posterior .. 50
merge.tfl .. 51
N-V-Vm ... 52
N-V-Vm.spc .. 54
N-V-Vm.tfl ... 55
N-V-Vm.vgc .. 56
plot.lnre ... 58
plot.spc ... 60
plot.tfl .. 62
plot.vgc ... 65
print.lnre ... 68
print.spc .. 69
print.tfl ... 71
print.vgc .. 72
productivity.measures .. 73
read.multiple.objects ... 77
read.spc ... 78
read.tfl .. 80
read.vgc ... 82
sample.spc ... 84
sample.tfl .. 85
spc ... 86
spc.interp ... 88
spc.vector ... 90
spc2tfl ... 91
tfl ... 93
Tiger ... 95
vec2xxx ... 96
vgc ... 98
vgc.interp ... 101
VV-Vm ... 102
zipfR.par .. 104
zipfR.plotutils .. 106
zipfR-package

Description

The zipfR package performs Large-Number-of-Rare-Events (LNRE) modeling of (linguistic) type frequency distributions (Baayen 2001) and provides utilities to run various forms of lexical statistics analysis in R.

Details

The best way to get started with zipfR is to read the tutorial, which you can find as a package vignette via the HTML documentation; you can also download it from https://zipfr.r-forge.r-project.org/#start

zipfR is released under the GNU General Public License (http://www.gnu.org/copyleft/gpl.html)

Author(s)

Stefan Evert <<stefan.evert@fau.de>> and Marco Baroni <<marco.baroni@unitn.it>>

Maintainer: Stefan Evert <<stefan.evert@fau.de>>

References

zipfR Website: https://zipfr.r-forge.r-project.org/

See Also

The zipfR tutorial: available as a package vignette and online from https://zipfr.r-forge.r-project.org/#start.

Some good entry points into the zipfR documentation are be spc, vgc, tf1, read.spc, read.tfl, read.vgc, lnre, lnre.vgc, plot.spc, plot.vgc

Harald Baayen’s LEXSTATS tools, which implement a wider range of LNRE models: https://www.springer.com/de/book/9780792370178

Stefan Evert’s UCS tools for collocation analysis, which include functions that have been integrated into zipfR: http://www.collocations.de/software.html

Examples

```r
## load Oliver Twist and Great Expectations frequency spectra
data(DickensOliverTwist.spc)
data(DickensGreatExpectations.spc)

## check sample size and vocabulary and hapax counts
N(DickensOliverTwist.spc)
V(DickensOliverTwist.spc)
Vm(DickensOliverTwist.spc,1)
N(DickensGreat Expectations.spc)
V(DickensGreatExpectations.spc)
Vm(DickensGreatExpectations.spc,1)

## compute binomially interpolated growth curves
ot.vgc <- vgc.interp(DickensOliverTwist.spc,(1:100)*1570)
ge.vgc <- vgc.interp(DickensGreatExpectations.spc,(1:100)*1865)

## plot them
plot(ot.vgc,ge.vgc,legend=c("Oliver Twist","Great Expectations"))

## load Dickens' works frequency spectrum
data(Dickens.spc)

## compute Zipf-Mandelbrot model from Dickens data
## and look at model summary
zm <- lnre("zm",Dickens.spc)
zm

## plot observed and expected spectrum
zm.spc <- lnre.spc(zm,N(Dickens.spc))
plot(Dickens.spc,zm.spc)

## obtain expected V and V1 values at arbitrary sample sizes
EV(zm,1e+8)
EVm(zm,1,1e+8)

## generate expected V and V1 growth curves up to a sample size
## of 10 million tokens and plot them, with vertical line at
## estimation size
```
ext.vgc <- lnre.vgc(zm,(1:100)*1e+5,m.max=1)
plot(ext.vgc,N0=N(zm),add.m=1)

Description

Frequency spectra included as examples in Baayen (2001).

Usage

Baayen2001

Format

A list of 23 frequency spectra, i.e. objects of class spc. List elements are named according to the original files, but without the extension .spc. See Baayen (2001, pp. 249-277) for details.

In particular, the following spectra are included:

alice: Lewis Carroll, *Alice’s Adventures in Wonderland*
through: Lewis Carroll, *Through the Looking-Glass and What Alice Found There*
war: H. G. Wells, *War of the Worlds*
hound: Arthur Conan-Doyle, *Hound of the Baskervilles*
havelaar: E. Douwes Dekker, *Max Havelaar*
turkish: An archeology text (Turkish)
bnc: The context-governed subcorpus of the British National Corpus (BNC)
in1: Sample of 1 million tokens from *The Independent*
in8: Sample of 8 million tokens from *The Independent*
heid: Nouns in -heid in the CELEX database (Dutch)
iteit: Nouns in -iteit in the CELEX database (Dutch)
ster: Nouns in -ster in the CELEX database (Dutch)
in: Nouns in -in in the CELEX database (Dutch)
nouns: Simplex nouns in the CELEX database (Dutch)
sing: Singular nouns in M. Innes, *The Bloody Wood*
plur: Plural nouns in M. Innes, *The Bloody Wood*
nessw: Nouns in -ness in the written subcorpus of the BNC
nesscg: Nouns in -ness in the context-governed subcorpus of the BNC
nessd: Nouns in -ness in the demographic subcorpus of the BNC
filarial: Counts of filarial worms in mites on rats
cv: Context-vowel patterns in the TIMIT speech database
pairs: Word pairs in E. Douwes Dekker, Max Havelaar

References

Examples
Baayen2001$alice

beta_gamma

Incomplete Beta and Gamma Functions (zipfR)

Description
The functions documented here compute incomplete and regularized Beta and Gamma functions as well as their logarithms and the corresponding inverse functions. These functions will be of interest to developers, not users of the toolkit.

Usage
Cgamma(a, log=!missing(base), base=exp(1))
Igamma(a, x, lower=TRUE, log=!missing(base), base=exp(1))
Igamma.inv(a, y, lower=TRUE, log=!missing(base), base=exp(1))
Rgamma(a, x, lower=TRUE, log=!missing(base), base=exp(1))
Rgamma.inv(a, y, lower=TRUE, log=!missing(base), base=exp(1))
Cbeta(a, b, log=!missing(base), base=exp(1))
Ibeta(x, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Ibeta.inv(y, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Rbeta(x, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Rbeta.inv(y, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Arguments

- **a, b**: non-negative numeric vectors, the parameters of the Gamma and Beta functions (b applies only to Beta functions)
- **x**: a non-negative numeric vector, the point at which the incomplete or regularized Gamma or Beta function is evaluated (for the Beta functions, x must be in the range [0, 1])
- **y**: a non-negative numeric vector, the values of the Gamma or Beta function on linear or logarithmic scale
- **lower**: whether to compute the lower (TRUE) or upper (FALSE) incomplete or regularized Gamma or Beta function
- **log**: if TRUE, return values of the Gamma and Beta functions – as well as the y argument of the inverse functions – are on logarithmic scale
- **base**: a positive number, specifying the base of the logarithmic scale for values of the Gamma and Beta functions (default: natural logarithm). Setting the base parameter implies log=TRUE.

Value

- **Cgamma** returns the (complete) Gamma function evaluated at a, \(\Gamma(a) \).
- **Igamma** returns the (lower or upper) incomplete Gamma function with parameter a evaluated at point x, \(\gamma(a, x) \) (lower=TRUE) or \(\Gamma(a, x) \) (lower=FALSE).
- **Rgamma** returns the corresponding regularized Gamma function, \(P(a, x) \) (lower=TRUE) or \(Q(a, x) \) (lower=FALSE). If log=TRUE, the returned values are on logarithmic scale as specified by the base parameter.
- **Igamma.inv** and **Rgamma.inv** compute the inverse of the incomplete and regularized Gamma functions with respect to the parameter x. I.e., Igamma.inv(a, y) returns the point x at which the (lower or upper) incomplete Gamma function with parameter a evaluates to y, and mutatis mutandis for Rgamma.inv(a, y). If log=TRUE, the parameter y is taken to be on a logarithmic scale as specified by base.
- **Cbeta** returns the (complete) Beta function with arguments a and b, \(B(a, b) \).
- **Ibeta** returns the (lower or upper) incomplete Beta function with parameters a and b, evaluated at point x, \(B(x; a, b) \) (lower=TRUE) and \(B^*(x; a, b) \) (lower=FALSE). Note that in contrast to the Gamma functions, capital B refers to the lower incomplete Beta function, and there is no standardized notation for the upper incomplete Beta function, so \(B^* \) is used here as an ad-hoc symbol.
- **Rbeta** returns the corresponding regularized Beta function, \(I(x; a, b) \) (lower=TRUE) or \(I^*(x; a, b) \) (lower=FALSE). If log=TRUE, the returned values are on logarithmic scale as specified by the base parameter.
- **Ibeta.inv** and **Rbeta.inv** compute the inverse of the incomplete and regularized Beta functions with respect to the parameter x. I.e., Ibeta.inv(y, a, b) returns the point x at which the (lower or upper) incomplete Beta function with parameters a and b evaluates to y, and mutatis mutandis for Rbeta.inv(y, a, b). If log=TRUE, the parameter y is taken to be on a logarithmic scale as specified by base.

All Gamma and Beta functions can be vectorized in the arguments x, y, a and b, with the usual R value recycling rules in the case of multiple vectorizations.

Mathematical Details

The upper incomplete Gamma function is defined by the Gamma integral
The lower incomplete Gamma function is defined by the complementary Gamma integral

\[\gamma(a, x) = \int_x^\infty t^{a-1} e^{-t} \, dt \]

The complete Gamma function calculates the full Gamma integral, i.e. \(\Gamma(a) = \gamma(a, 0) \). The regularized Gamma functions scale the corresponding incomplete Gamma functions to the interval \([0, 1]\), by dividing through \(\Gamma(a)\). Thus, the lower regularized Gamma function is given by

\[P(a, x) = \frac{\gamma(a, x)}{\Gamma(a)} \]

and the upper regularized Gamma function is given by

\[Q(a, x) = \frac{\Gamma(a, x)}{\Gamma(a)} \]

The lower incomplete Beta function is defined by the Beta integral

\[B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} \, dt \]

and the upper incomplete Beta function is defined by the complementary integral

\[B^*(x; a, b) = \int_x^1 t^{a-1} (1 - t)^{b-1} \, dt \]

The complete Beta function calculates the full Beta integral, i.e. \(B(a, b) = B(1; a, b) = B^*(0; a, b) \). The regularized Beta function scales the incomplete Beta function to the interval \([0, 1]\), by dividing through \(B(a, b)\). The lower regularized Beta function is thus given by

\[I(x; a, b) = \frac{B(x; a, b)}{B(a, b)} \]

and the upper regularized Beta function is given by

\[I^*(x; a, b) = \frac{B^*(x; a, b)}{B(a, b)} \]

See Also

gamma and lgamma, which are fully equivalent to Cgamma. beta and lbeta, which are fully equivalent to Cbeta.

The implementations of the incomplete and regularized Gamma functions are based on the Gamma distribution (see pgamma), and those of the Beta functions are based on the Beta distribution (see pbeta).
Examples

Cgamma(5 + 1) # = factorial(5)

P(X >= k) for Poisson distribution with mean alpha
alpha <- 5
k <- 10
Rgamma(k, alpha) # == ppois(k-1, alpha, lower=FALSE)

n <- 49
k <- 6
1 / ((n+1) * Cbeta(n-k+1, k+1)) # == choose(n, k)

P(X >= k) for binomial distribution with parameters n and p
n <- 100
p <- .1
k <- 15
Rbeta(p, k, n-k+1) # == pbinom(k-1, n, p, lower=FALSE)

bootstrap.confint

Estimate Confidence Intervals from Parametric Bootstrap Simulations
(zipfR)

Description

Estimate confidence intervals for empirical distributions obtained by parametric bootstrapping. The input data must contain a sufficient number of bootstrap replicates for the desired confidence level.

Usage

bootstrap.confint(x, level=0.95,
 method=c("normal", "mad", "empirical"),
 data.frame=FALSE)

Arguments

x a numeric matrix, with rows corresponding to bootstrap replicates and columns corresponding to different statistics or coefficients. The matrix should have column labels, which will be preserved in the result. A data frame with numeric columns is automatically converted to a matrix.

level desired confidence level (two-sided)

method type of confidence interval to be estimated (see "Details" below)

data.frame if TRUE, the return value is converted to a data frame
Details

This function can compute three different types of confidence intervals, selected by the method parameter. In addition, corresponding estimates of central tendency (center) and spread (spread) of the distribution are returned.

normal: Wald-type confidence interval based on normal approximation of the bootstrapped distribution (default). Central tendency is given by the sample mean, spread by standard deviation. This method is unreliable if the bootstrapping produces outlier results and can report confidence limits outside the feasible range of a parameter or coefficient (e.g. a negative population diversity \(S \)). For this reason, it is strongly recommended to use a more robust type of confidence interval.

mad: Robust asymmetric confidence intervals around the median, using separate estimates for left and right median absolute deviation (MAD) as robust approximations of standard deviation. Central tendency is given by the median, and spread by the average of left and right standard deviation (estimated via MAD). This method is applicable in most situations and requires fewer bootstrap replicates than empirical confidence intervals. Note that the values are different from those returned by mad because of the separate left and right estimators.

empirical: The empirical inter-quantile range, e.g. 2.5% to 97.5% for default conf.level=.95. Note that the actual range might be slightly different depending on the number of bootstrap replicates available. Central tendency is given by the median, and spread by the inter-quartile range (IQR) re-scaled to be comparable to standard deviation (cf. IQR). This is the only method guaranteed to stay within feasible range, but requires a large number of bootstrap replicates for reliable confidence intervals (e.g. at least 120 replicates for the default 95% confidence level).

Value

A numeric matrix with the same number of columns and column labels as \(x \), and four rows:

1. the lower boundary of the confidence interval (labelled with the corresponding quantile, e.g. 2.5%)
2. the upper boundary of the confidence interval (labelled with the corresponding quantile, e.g. 97.5%)
3. an estimate of central tendency (labelled center)
4. an estimate of spread on a scale comparable to standard deviation (labelled spread)

If data.frame=TRUE, the matrix is converted to a data frame for convenient printing and access in interactive sessions.

See Also

bootstrap.confint is usually applied to the output of \(\text{lnre.bootstrap} \) with simplify=TRUE. In particular, confint.lnre uses this function to obtain bootstrapped confidence intervals for LNRE model parameters and other coefficients; \(\text{lnre.productivity.measures} \) (with bootstrap=TRUE) uses it to determine approximate sampling distributions of productivity measures for a LNRE population.
Examples

```r
M <- cbind(alpha=rnorm(200, 10, 5),  # Gaussian distribution around mean = 10
           beta=rlnorm(200, log(10), 1)) # log-normal distribution around median = 10

summary(M) # overview of the distribution

bootstrap.confint(M, method="normal")  # normal approximation
bootstrap.confint(M, method="mad")     # robust asymmetric MAD estimates
bootstrap.confint(M, method="empirical") # empirical confidence interval

bootstrap.confint(M, method="normal", data.frame=TRUE) # as data frame
```

Brown Corpus Frequency Data (zipfR)

Description

Brown.tfl, Brown.spc and Brown.emp.vgc are zipfR objects of classes tfl, spc and vgc, respectively.

These data were extracted from the Brown corpus (see Kucera and Francis 1967).

Details

Brown.emp.vgc is the empirical vocabulary growth curve, reflecting the V and $V(1)$ development in the non-randomized corpus.

We removed numbers and other forms of non-linguistic material before collecting word counts from the Brown.

References

See Also

The datasets documented in BrownSubsets pertain to various subsets of the Brown (e.g., informative prose, adjectives only, etc.)

Examples

```r
data(Brown.tfl)
summary(Brown.tfl)

data(Brown.spc)
summary(Brown.spc)

data(Brown.emp.vgc)
```
Description

Objects of classes `spc` and `vgc` that contain frequency data for various subsets of words from the Brown corpus (see Kucera and Francis 1967).

Details

BrownAdj.spc, BrownNoun.spc and BrownVer.spc are frequency spectra of all the Brown corpus words tagged as adjectives, nouns and verbs, respectively. BrownAdj.emp.vgc, BrownNoun.emp.vgc and BrownVer.emp.vgc are the corresponding observed vocabulary growth curves (tracking the development of V and $V(1)$, like all the files with suffix `.emp.vgc` below).

BrownImag.spc and BrownInform.spc are frequency spectra of the Brown corpus words subdivided into the two main stylistic partitions of the corpus, i.e., imaginative and informative prose, respectively. BrownImag.emp.vgc and BrownInform.emp.vgc are the corresponding observed vocabulary growth curves.

Brown100k.spc is the spectrum of the first 100,000 tokens in the Brown (useful, e.g., for extrapolation experiments in which we want to estimate a \lnre model on a subset of the data available). The corresponding observed growth curve can be easily obtained from the one for the whole Brown (Brown.emp.vgc).

Notice that we removed numbers and other forms of non-linguistic material before collecting any data from the Brown.

References

See Also

The data described in Brown pertain to the Brown as a whole.

Examples

```r
data(BrownAdj.spc)
summary(BrownAdj.spc)

data(BrownAdj.emp.vgc)
summary(BrownAdj.emp.vgc)

data(BrownInform.spc)
```
Confidence Intervals for LNRE Model Parameters (zipfR)

Description

Compute bootstrapped confidence intervals for LNRE model parameters. The supplied model must contain a sufficient number of bootstrapping replicates.

Usage

```r
## S3 method for class 'lnre'
confint(object, parm, level=0.95, method=c("mad", "normal", "empirical"),
        plot=FALSE, breaks="Sturges", ...)  
```

Arguments

- **object**: an LNRE model (i.e. an object belonging to a subclass of lnre) with bootstrapping data
- **parm**: model parameter(s) for which confidence intervals are desired. If unspecified, all parameters as well as population diversity S and goodness-of-fit statistic X^2 are shown.
- **level**: desired confidence level (two-sided)
- **method**: type of confidence interval to be estimated (see bootstrap.confint for details). Note that this parameter defaults to the asymmetric and more robust mad method here.
- **plot**: if TRUE, plot bootstrapping histogram of the respective model parameter with density estimate and confidence interval
- **breaks**: breakpoints for histogram shown with plot=TRUE (see hist for details)
- **...**: all other arguments are ignored

Value

A data frame with one numeric column for each selected model parameter (labelled with the parameter name) and four rows:

1. the lower boundary of the confidence interval (labelled with the corresponding quantile, e.g. 2.5%)
2. the upper boundary of the confidence interval (labelled with the corresponding quantile, e.g. 97.5%)
3. an estimate of central tendency (labelled center)
4. an estimate of spread on a scale comparable to standard deviation (labelled spread)

See Also

lnre for estimating LNRE models with bootstrap replicates, lnre.bootstrap for the underlying parameteric bootstrapping code, and bootstrap.confint for the different methods of estimating confidence intervals.

Examples

```r
model <- lnre("fzm", spc=BrownAdj.spc, bootstrap=20)
confint(model, "alpha") # Zipf slope
confint(model, "S") # population diversity
confint(model, "S", method="normal") # Gaussian approx works well in this case

confint(model) # overview
confint(model, "alpha", plot=TRUE) # visualize bootstrap distribution
```

Dickens

Dickens’ Frequency Data (zipfR)

Description

Objects of classes spc and vgc that contain frequency data for a collection of Dickens’s works from Project Gutenberg, and for 3 novels (Oliver Twist, Great Expectations and Our Mutual Friends).

Details

Dickens.spc has a frequency spectrum derived from a collection of Dickens’ works downloaded from the Gutenberg archive (A Christmas Carol, David Copperfield, Dombey and Son, Great Expectations, Hard Times, Master Humphrey’s Clock, Nicholas Nickleby, Oliver Twist, Our Mutual Friend, Sketches by BOZ, A Tale of Two Cities, The Old Curiosity Shop, The Pickwick Papers, Three Ghost Stories). Dickens.emp.vgc contains the corresponding observed vocabulary growth (V and $V(1)$).

DickensOliverTwist.spc and DickensOliverTwist.emp.vgc contain spectrum and observed growth curve (V and $V(1)$) of the early novel Oliver Twist (1837-1839).

DickensGreatExpectations.spc and DickensGreatExpectations.emp.vgc contain spectrum and observed growth curve (V and $V(1)$) of the late novel Great Expectations (1860-1861).

DickensOurMutualFriend.spc and DickensOurMutualFriend.emp.vgc contain spectrum and observed growth curve (V and $V(1)$) of Our Mutual Friend, the last novel completed by Dickens (1864-1865).

Notice that we removed numbers and other forms of non-linguistic material before collecting the frequency data.
estimate.model

References

Project Gutenberg: https://www.gutenberg.org/

Examples

data(Dickens.spc)
summary(Dickens.spc)
data(Dickens.emp.vgc)
summary(Dickens.emp.vgc)
data(DickensOliverTwist.spc)
summary(DickensOliverTwist.spc)
data(DickensOliverTwist.emp.vgc)
summary(DickensOliverTwist.emp.vgc)

estimate.model Estimate LNRE Model Parameters (zipfR)

Description

Internal function: Generic method for estimation of LNRE model parameters. Based on the class of its first argument, the method dispatches to a suitable implementation of the estimation procedure. Unless you are a developer working on the zipfR source code, you are probably looking for the lnre manpage.

Usage

estimate.model(model, spc, param.names,
 method, cost.function, m.max=15,
 runs=3, debug=FALSE, ...)

Arguments

model LNRE model object of the appropriate class (a subclass of lnre). All parameters of the LNRE model that are not listed in param.names must have been initialized to their prespecified values in the model object.
spc an observed frequency spectrum, i.e. an object of class spc. The values of the missing parameters will be estimated from this frequency spectrum.
param.names a character vector giving the names of parameters for which values have to be estimated ("missing" parameters)
method

name of the minimization algorithm used for parameter estimation (see `lnre` for details)

cost.function

cost function to be minimized (see `lnre` for details). **NB:** this is a direct reference to the function object rather than just the name of the cost function. Look-up of the appropriate cost function implementation is performed in the `lnre` constructor.

m.max

number of spectrum elements that will be used to compute the cost function (passed on to `cost.function`)

runs

number of parameter optimization runs with random initialization. Parameters from the run that achieves the smallest value of the cost function will be selected. Some method implementations may not support multiple optimization runs.

debug

if TRUE, some debugging and progress information will be printed during the estimation procedure

... additional arguments are passed on and may be used by some implementations

Details

By default, `estimate.model` dispatches to a generic implementation of the estimation procedure that can be used with all types of LNRE models (`estimate.model.lnre`).

This generic implementation can be overridden for specific LNRE models, e.g. to calculate better init values or improve the estimation procedure in some other way. To provide a custom implementation for Zipf-Mandelbrot models (of class `lnre.zm`), for instance, it is sufficient to define the corresponding method implementation `estimate.model.lnre.zm`. If no custom implementation is provided but the user has selected the Custom method (which is the default), `estimate.model` falls back on Nelder-Mead for multi-dimensional minimization and NLM for one-dimensional minimization (where Nelder-Mead is considered to be unreliable).

Parameter estimation is performed by minimization of the cost function passed in the `cost.function` argument (see `lnre` for details). Depending on the method argument, a range of different minimization algorithms can be used (see `lnre` for a complete listing). The minimization algorithm always operates on transformed parameter values, making use of the `transform` utility provided by LNRE models (see `lnre.details` for more information about utility functions). All parameters are initialized to 0 in the transformed scale, which should translate to sensible starting points.

Note that the `estimate.model` implementations **do not perform any error checking**. It is the responsibility of the caller to make sure that the arguments are sensible and complete. In particular, all model parameters that will not be estimated (i.e. are not listed in `param.names`) must have been initialized to their prespecified values in the `model` passed to the function.

Value

A modified version of `model`, where the missing parameters listed in `param.names` have been estimated from the observed frequency spectrum `spc`. In addition, goodness-of-fit information is added to the object.

See Also

The user-level function for estimating LNRE models is `lnre`. Its manpage also lists available cost functions and minimization algorithms.
The internal structure of \texttt{lnre} objects (representing LNRE models) is described on the \texttt{lnre.details} manpage, which also outlines the necessary steps for implementing a new LNRE model.

The minimization algorithms used are described in detail on the \texttt{nlm} and \texttt{optim} manpages from R’s standard library.

\begin{tabular}{ll}
\textbf{EV-EVm} & \textit{Expected Frequency Spectrum (zipfR)}
\end{tabular}

\textbf{Description}

\textit{EV} and \textit{EVm} are generic methods for computing the expected vocabulary size $E[V]$ and frequency spectrum $E[V_m]$ according to a LNRE model (i.e. an object belonging to a subclass of \texttt{lnre}).

When applied to a frequency spectrum (i.e. an object of class \texttt{spc}), these methods perform binomial interpolation (see \texttt{EV.spc} for details), although \texttt{spc.interp} and \texttt{vgc.interp} might be more convenient binomial interpolation functions for most purposes.

\textbf{Usage}

\begin{verbatim}
EV(obj, N, ...)
EVm(obj, m, N, ...)
\end{verbatim}

\textbf{Arguments}

\begin{verbatim}
obj an LNRE model (i.e. an object belonging to a subclass of \texttt{lnre}) or frequency spectrum (i.e. an object of class \texttt{spc})
m positive integer value determining the frequency class m to be returned (or a vector of such values)
N sample size N for which the expected vocabulary size and frequency spectrum are calculated (or a vector of sample sizes)
... additional arguments passed on to the method implementation (see respective manpages for details)
\end{verbatim}

\textbf{Value}

\textit{EV} returns the expected vocabulary size $E[V(N)]$ in a sample of N tokens, and \textit{EVm} returns the expected spectrum elements $E[V_m(N)]$, according to the LNRE model given by \texttt{obj} (or according to binomial interpolation).

\textbf{See Also}

See \texttt{lnre} for more information on LNRE models, a listing of available models, and methods for parameter estimation.

The variances of the random variables $V(N)$ and $V_m(N)$ can be computed with the methods \texttt{VV} and \texttt{VVm}.

See \texttt{EV.spc} and \texttt{EVm.spc} for more information about the usage of these methods to perform binomial interpolation (but consider using \texttt{spc.interp} and \texttt{vgc.interp} instead).
Examples

see lnre() documentation for examples

EV-EVm.spc

Binomial Interpolation (zipfR)

Description

Compute the expected vocabulary size $E[V(N)]$ (with function EV.spc) or expected frequency spectrum $E[V_m(N)]$ (with function EVm.spc) for a random sample of size N from a given frequency spectrum (i.e., an object of class spc). The expectations are calculated by binomial interpolation (following Baayen 2001, pp. 64-69).

Note that these functions are not user-visible. They can be called implicitly through the generic methods EV and EVm, applied to an object of type spc.

Usage

```r
## S3 method for class 'spc'
EV(obj, N, allow.extrapolation=FALSE, ...)

## S3 method for class 'spc'
EVm(obj, m, N, allow.extrapolation=FALSE, ...)
```

Arguments

- `obj` an object of class spc, representing a frequency spectrum
- `m` positive integer value determining the frequency class m for which $E[V_m(N)]$ be returned (or a vector of such values)
- `N` sample size N for which the expected vocabulary size or frequency spectrum are calculated (or a vector of sample sizes)
- `allow.extrapolation` if TRUE, the requested sample size N may be larger than the sample size of the frequency spectrum obj, for binomial extrapolation. This option should be used with great caution (see "Details" below).
- `...` additional arguments passed on from generic methods will be ignored
Details

These functions are naive implementations of binomial interpolation, using Equations (2.41) and (2.43) from Baayen (2001). No guarantees are made concerning their numerical accuracy, especially for extreme values of \(m \) and \(N \).

According to Baayen (2001), pp. 69-73, the same equations can also be used for binomial *extrapolation* of a given frequency spectrum to larger sample sizes. However, they become numerically unstable in this case and will typically break down when extrapolating to more than twice the size of the observed sample (Baayen 2001, p. 75). Therefore, extrapolation has to be enabled explicitly with the option `allow.extrapolation=TRUE` and should be used with great caution.

Value

\(EV \) returns the expected vocabulary size \(E[V(N)] \) for a random sample of \(N \) tokens from the frequency spectrum \(\text{obj} \), and \(EVm \) returns the expected spectrum elements \(E[V_m(N)] \) for a random sample of \(N \) tokens from \(\text{obj} \), calculated by binomial interpolation.

References

See Also

\(EV \) and \(EVm \) for the generic methods and links to other implementations

- `spc.interp` and `vgc.interp` are convenience functions that compute an expected frequency spectrum or vocabulary growth curve by binomial interpolation

Description

Corpus data for measuring the productivity of German word formation affixes `-bar`, `-lich`, `-sam`, `-ös`, `-tum`, `Klein-`, `-chen` and `-lein` (Evert & Lüdeling 2001). Data were extracted from two volumes of the German daily newspaper *Stuttgarter Zeitung*, then manually cleaned and normalized.

Usage

\[\text{EvertLuedeling2001} \]

Format

A list of 8 character vectors for the different affixes, with names `klein` (*Klein-*), `bar` (*-bar*), `chen` (*-chen*), `lein` (*-lein*), `lich` (*-lich*), `oes` (*-ös*), `sam` (*-sam*), `tum` (*-tum*).

Each vector contains all relevant tokens from the corpus in their original (chronological) ordering, so vocabulary growth curves can be determined from the vectors in addition to type frequency lists and frequency spectra.
References

Examples

```r
str(EvertLuedeling2001)

# tokens and type counts for the different affixes
sapply(EvertLuedeling2001, function (x) {
    y <- vec2tfl(x)
    c(N=N(y), V=V(y))
})
```

ItaPref

Italian Ri- and Ultra- Prefix Frequency Data (zipfR)

Description

ItaRi.spc and *ItaRi*.emp.vgc are *zipfR* objects of classes *tfl*, *spc* and *vgc*, respectively. They contain frequency data for all verbal lemmas with the prefix ri- (similar to English re-) in the Italian *la Repubblica* corpus.

ItaUltra.spc and *ItaUltra*.emp.vgc contain the same kinds of data for the adjectival prefix ultra-.

Details

ItaRi.emp.vgc and *ItaUltra*.emp.vgc are *empirical* vocabulary growth curves, reflecting the V and $V(1)$ development in the non-randomized corpus.

The data were manually checked, as described for ri- in Baroni (to appear).

References

la Repubblica corpus: http://sslmit.unibo.it/repubblica/

Examples

```r
data(ItaRi.spc)
summary(ItaRi.spc)

data(ItaRi.emp.vgc)
```
Type and Probability Distributions of LNRE Models (zipfR)

Description

Type density g (tdlnre), type distribution G (tplnre), type quantiles G^{-1} (tqlnre), probability density f (dlnre), distribution function F (plnre), quantile function F^{-1} (qlnre), logarithmic type and probability densities (ltdlnre and ldlnre), and random sample generation (rlnre) for LNRE models.

Usage

```r
tdlnre(model, x, ...)  
tplnre(model, q, lower.tail=FALSE, ...)  
tqlnre(model, p, lower.tail=FALSE, ...)  
dlnre(model, x, ...)  
plnre(model, q, lower.tail=TRUE, ...)  
qlnre(model, p, lower.tail=TRUE, ...)  
ltdlnre(model, x, base=10, log.x=FALSE, ...)  
ldlnre(model, x, base=10, log.x=FALSE, ...)  
rlnre(model, n, what=c("tokens", "tf1"), ...)  
```

Arguments

- `model` an object belonging to a subclass of lnre, representing a LNRE model
- `x` vector of type probabilities p_i for which the density function is evaluated
- `q` vector of type probability quantiles, i.e. threshold values ρ on the type probability axis
- `p` vector of tail probabilities
- `lower.tail` if TRUE, lower tail probabilities or type counts are returned / expected in the p argument. Note that the defaults differ for distribution function and type distribution, and see "Details" below.
base
positive number, the base with respect to which the log-transformation is performed (see "Details" below)

log.x
if TRUE, the values passed in the argument x are assumed to be logarithmic, i.e. $\log_a \pi$

n
size of random sample to generate. If length(n) > 1, the length is taken to be the number required.

what
whether to return the sample as a vector of tokens or as a type-frequency list (usually more efficient)

... further arguments are passed through to the method implementations (currently unused)

Details

Note that the order in which arguments are specified differs from the analogous functions for common statistical distributions in the R standard library. In particular, the LNRE model model always has to be given as the first parameter so that R can dispatch the function call to an appropriate method implementation for the chosen LNRE model.

Some of the functions may not be available for certain types of LNRE models. In particular, no analytical solutions are known for the distribution and quantiles of GIGP models, so the functions tpllnre, tqlnre, plnre, qlnre and rlntre (which depends on qlnre and tplnre) are not implemented for objects of class lnre.gigp.

The default tails differ for the distribution function (plnre, qlnre) and the type distribution (tplnre, tqlnre), in order to match the definitions of $F(\rho)$ and $G(\rho)$. While the distribution function defaults to lower tails (lower.tail=TRUE, corresponding to F and F^{-1}), the type distribution defaults to upper tails (lower.tail=FALSE, corresponding to G and G^{-1}).

Unlike for standard distributions, logarithmic tail probabilities (log.p=TRUE) are not provided for the LNRE models, since here the focus is usually on the bulk of the distribution rather than on the extreme tails.

The log-transformed density functions f^* and g^* returned by ldlntre and ltlntre, respectively, can be understood as probability and type densities for $\log_a \pi$ instead of π, and are useful for visualization of LNRE populations (with a logarithmic scale for the parameter π on the x-axis). For example,

$$G(\log_a \rho) = \int_{\log_a \rho}^{0} g^*(t) \, dt$$

Value

For rlntre, either a factor of length n (what="tokens", the default) or a tfl object (what="tfl"), representing a random sample from the population described by the specified LNRE model. Note that the type-frequency list is a sufficient statistic, i.e. it provides all relevant information from the sample. For large n, type-frequency lists are generated more efficiently and with less memory overhead.

For all other functions, a vector of non-negative numbers of the same length as the second argument (x, p or q).
tdlnre returns the type density \(g(\pi) \) for the values of \(\pi \) specified in the vector \(x \). tplnre returns the type distribution \(G(\rho) \) (default) or its complement \(1 - G(\rho) \) (if \texttt{lower.tail=TRUE}) for the values of \(\rho \) specified in the vector \(q \). tqlnre returns type quantiles, i.e. the inverse \(G^{-1}(x) \) (default) or \(G^{-1}(S - x) \) (if \texttt{lower.tail=TRUE}) of the type distribution, for the type counts \(x \) specified in the vector \(p \).

dlnre returns the probability density \(f(\pi) \) for the values of \(\pi \) specified in the vector \(x \). plnre returns the distribution function \(F(\rho) \) (default) or its complement \(1 - F(\rho) \) (if \texttt{lower.tail=FALSE}) for the values of \(\rho \) specified in the vector \(q \). qlnre returns quantiles, i.e. the inverse \(F^{-1}(p) \) (default) or \(F^{-1}(1 - p) \) (if \texttt{lower.tail=FALSE}) of the distribution function, for the probabilities \(p \) specified in the vector \(p \).

ldlnre and ltdlnre compute logarithmically transformed versions of the probability and type density functions, respectively, taking logarithms with respect to the base \(a \) specified in the base argument (default: \(a = 10 \)). See "Details" above for more information.

See Also
lnre for more information about LNRE models and how to initialize them.

Random samples generated with \texttt{rlnre} can be further processed with the functions \texttt{vec2tf1}, \texttt{vec2spc} and \texttt{vec2vgc} (for token vectors) and \texttt{tfl2spc} (for type-frequency lists).

Examples

```r
## define ZM and fZM LNRE models
ZM <- lnre("zm", alpha=.8, B=1e-3)
FZM <- lnre("fzm", alpha=.8, A=1e-5, B=.05)

## random samples from the two models
vec2tfl(rlnre(ZM, 10000))
vec2tfl(rlnre(FZM, 10000))
rlnre(FZM, 10000, what="tfl") # more efficient

## plot logarithmic type density functions
x <- 10^seq(-6, 1, by=.01) # pi = 10^{(-6)} .. 10^{(-1)}
y.zm <- ltdlnre(ZM, x)
y.fzm <- ltdlnre(FZM, x)
plot(x, y.zm, type="l", lwd=2, col="red", log="x", ylim=c(0,14000))
lines(x, y.fzm, lwd=2, col="blue")
legend("topright", legend=c("ZM", "fZM"), lwd=3, col=c("red", "blue"))

## probability pi_k of k-th type according to FZM model
k <- 10
plnre(FZM, tqlnre(FZM, k-1)) - plnre(FZM, tqlnre(FZM, k))

## number of types with pi >= 1e-6
tplnre(ZM, 1e-6)

## lower tail fails for infinite population size
## Not run:
tplnre(ZM, 1e-3, lower=TRUE)
```
End(Not run)

total probability mass assigned to types with pi <= 1e-6
pLNRE(ZM, 1e-6)

lnre

LNRE Models (zipfR)

Description

LNRE model constructor, returns an object representing a LNRE model with the specified parameters, or allows parameters to be estimated automatically from an observed frequency spectrum.

Usage

```r
lnre(type=c("zm", "fzm", "gigp"),
    spc=NULL, debug=FALSE,
    cost=c("gof", "chisq", "linear", "smooth.linear", "mse", "exact"),
    m.max=15, runs=5,
    method=c("Nelder-Mead", "NLM", "BFGS", "SANN", "Custom"),
    exact=TRUE, sampling=c("Poisson", "multinomial"),
    bootstrap=0, verbose=TRUE, parallel=1L,
    ...
)
```

Arguments

- **type**: class of LNRE model to use (see "LNRE Models" below)
- **spc**: observed frequency spectrum used to estimate model parameters
- **debug**: if TRUE, detailed debugging information will be printed during parameter estimation
- **cost**: cost function for measuring the "distance" between observed and expected vocabulary size and frequency spectrum. Parameters are estimated by minimizing this cost function (see "Cost Functions" below for a list of built-in cost functions and details on user-defined cost functions).
- **m.max**: number of spectrum elements considered by the cost function (see "Cost Functions" below for more information). If unspecified, the default is automatically adjusted to avoid small spectrum elements that may be mathematically unreliable.
- **runs**: number of parameter optimization runs with random initialization. Parameters from the run that achieves the smallest value of the cost function will be selected. Currently not supported for method="Custom", please use runs=1 in this case.
- **method**: algorithm used for parameter estimation, by minimizing the value of the cost function (see "Parameter Estimation" below for details, and "Minimization Algorithms" for descriptions of the available algorithms)
exact if FALSE, certain LNRE models will be allowed to use approximations when calculating expected values and variances, in order to improve performance and numerical stability. However, the computed values might be inaccurate or inconsistent in “extreme” situations: in particular, $E[V]$ might be larger than N when N is very small; $\sum_m E[V_m]$ can be larger than $E[V]$ at the same N; $\sum_m m \cdot E[V_m]$ can be larger than N.

sampling type of random sampling model to use. Poisson sampling is mathematically simpler and allows fast and robust calculations, while multinomial sampling is more accurate especially for very small samples. Poisson sampling is the default and should be unproblematic for sample sizes $N \geq 10000$. NB: The multinomial sampling option has not been implemented yet.

bootstrap number of bootstrap samples used to estimate confidence intervals for estimated model parameters. Recommended values are bootstrap=100 or bootstrap=200. Bootstrapping can be very time-consuming and should not be used if the underlying sample size is very large (roughly, more than 1 million tokens). See lnre.bootstrap for further information and warnings.

parallel whether to use parallelisation for the bootstrapping procedure (highly recommended). See lnre.bootstrap for details.

verbose if TRUE, a progress bar will be shown in the R console during the bootstrapping procedure.

... all further named arguments are interpreted as parameter values for the chosen LNRE model (see the respective manpages for names and descriptions of the model parameters).

Details

Currently, the following LNRE models are supported by the zipfR package:

The Zipf-Mandelbrot (ZM) LNRE model (see lnre.zm for details).

The finite Zipf-Mandelbrot (fZM) LNRE model (see lnre.fzm for details).

The Generalized Inverse Gauss-Poisson (GIGP) LNRE model (see lnre.gigp for details).

If explicit model parameters are specified in addition to an observed frequency spectrum spc, these parameters are fixed to the given values and are excluded from the estimation procedure. This feature can be useful if fully automatic parameter estimation leads to a poor or counterintuitive fit.

Value

An object of a suitable subclass of lnre, depending on the type argument (e.g. lnre.fzm for type="fzm"). This object represents a LNRE model of the selected type with the specified parameter values, or with parameter values estimated from the observed frequency spectrum spc.

The internal structure of lnre objects is described on the lnre.details manpage (intended for developers).

Parameter Estimation

Automatic parameter estimation for LNRE models is performed by matching the expected vocabulary size and frequency spectrum of the model against the observed data passed in the spc argument.
For this purpose, a cost function has to be defined as a measure of the "distance" between observed and expected frequency spectrum. Parameters are then estimated by applying a minimization algorithm in order to find those parameter values that lead to the smallest possible cost.

Parameter estimation is a crucial and often also quite critical step in the application of LNRE models. Depending on the shape of the observed frequency spectrum, the automatic estimation procedure may result in a poor and counter-intuitive fit, or may fail altogether.

Usually, multiple runs of the minimization are performed with different random start values. An error will only be reported if all the estimation runs fail. Such multiple runs have not been implemented for the Custom minimization method yet; please specify runs=1 in this case.

Users can influence parameter estimation by choosing from a range of predefined cost functions and from several minimization algorithms, as described in the following sections. Some experimentation with the cost, m.max and method arguments will often help to resolve estimation failures and may result in a considerably better goodness-of-fit.

Cost Functions

The following cost functions are available and can be selected with the cost argument. All functions are based on the differences between observed and expected values for vocabulary size and the first elements of the frequency spectrum ($V_1, ..., V_m$, where m is given by the m.max argument):

- **gof**: the multivariate chi-squared statistic used for goodness-of-fit testing (lnre.goodness.of.fit). This cost function corresponds (almost) to maximum-likelihood parameter estimation and is used by default.
- **chisq**: cost function based on a simplified version of the multivariate chi-squared test for goodness-of-fit (assuming independence between the random variables V_m).
- **linear**: linear cost function, which sums over the absolute differences between observed and expected values. This cost function puts more weight on fitting the vocabulary size and the first few elements of the frequency spectrum (where absolute differences are much larger than for higher spectrum elements).
- **smooth.linear**: modified version of the linear cost function, which smoothes the kink of the absolute value function for a difference of 0 (since non-differentiable cost functions might be problematic for gradient-base minimization algorithms)
- **mse**: mean squared error cost function, averaging over the squares of differences between observed and expected values. This cost function penalizes large absolute differences more heavily than linear cost (and therefore puts even greater weight on fitting vocabulary size and the first spectrum elements).
- **exact**: this "virtual" cost function attempts to match the observed vocabulary size and first spectrum elements exactly, ignoring differences for all higher spectrum elements. This is achieved by adjusting the value of m.max automatically, depending on the number of free parameters that are estimated (in general, the number of constraints that can be satisfied by estimating parameters is the same as the number of free parameters). Having adjusted m.max, the mse cost function is used to determine parameter values, so that the estimation procedure will not fail even if the constraints cannot be matched exactly.

Alternatively a user-defined cost function can be passed as a function object with signature 'cost(model, spc, m.max)', which compares the LNRE model 'model' against the observed frequency spectrum 'spc' and returns a cost value (i.e. lower cost indicates a better fit).
Minimization Algorithms

Several different minimization algorithms can be used for parameter estimation and are selected with the method argument:

Nelder-Mead: the Nelder-Mead algorithm, implemented by the optim function, performs minimization without using derivatives. Parameter estimation is therefore very robust, while almost as fast and accurate as the NLM method. Nelder-Mead is the default algorithm and is also used internally by most custom minimization procedures (see below).

NLM: a standard Newton-type algorithm for nonlinear minimization, implemented by the nlm function, which makes use of numerical derivatives of the cost function. NLM minimization converges quickly and obtains very precise parameter estimates (for a local minimum of the cost function), but it is not very stable and may cause parameter estimation to fail altogether.

SANN: minimization by simulated annealing, also provided by the optim function. Like Nelder-Mead, this algorithm is very robust because it avoids numerical derivatives, but convergence is extremely slow. In some cases, SANN might produce a better fit than Nelder-Mead (if the latter converges to a suboptimal local minimum).

BFGS: a quasi-Newton method developed by Broyden, Fletcher, Goldfarb and Shanno. This minimization algorithm is efficient, but should be applied with care as it will often overshoot the valid range of parameter values.

Custom: a custom estimation procedure provided for certain types of LNRE model, which may exploit special mathematical properties of the model in order to calculate one or more of the parameter values directly. For example, one parameter of the ZM and fZM models can easily be determined from the constraint $E[V] = V$ (but note that this additional constraint leads to a different fit than is obtained by plain minimization of the cost function!). Custom estimation might also apply special configuration settings to improve convergence of the minimization process, based on knowledge about the valid ranges and "behaviour" of model parameters. If no custom estimation procedure has been implemented for the selected LNRE model, lnre falls back on the Nelder-Mead or NLM algorithm.

See the nlm and optim manpages for more information about the minimization algorithms used and key references.

See Also

Detailed descriptions of the different LNRE models provided by zipfR and their parameters can be found on the manpages lnre.zm, lnre.fzm and lnre.gigp.

Useful methods for trained models are lnre.spc, lnre.vgc, EV, EVm, VV, VVm. Suitable implementations of the print and summary methods are also provided (see print.lnre for details), as well as for plotting (see plot.lnre). Note that the methods N, V and Vm can be applied to LNRE models with estimated parameters and return information about the observed frequency spectrum used for parameter estimation.

If bootstrapping samples have been generated (bootstrap > 0), confidence intervals for the model parameters can be determined with confint.lnre. See lnre.bootstrap for more information on the bootstrapping procedure and implementation.

The lnre.details manpage gives details about the implementation of LNRE models and the internal structure of lnre objects, while estimate.model has more information on the parameter estimation procedure (both manpages are intended for developers).
See \texttt{lnre.goodness.of.fit} for a complete description of the goodness-of-fit test that is automatically performed after parameter estimation (and which is reported in the summary of the LNRE model). This function can also be used to evaluate the predictions of the LNRE model on a different data set than the one used for parameter estimation.

Examples

load Dickens dataset
data(Dickens.spc)

estimate parameters of GIGP model and show summary
m <- lnre(“gigp”, Dickens.spc)
m

N, V and V1 of spectrum used to compute model
(should be the same as for Dickens.spc)
N(m)
V(m)
Vm(m,1)

expected V and V_m and their variances for arbitrary N
EV(m,100e6)
VV(m,100e6)
EVm(m,1,100e6)
VVm(m,1,100e6)

use only 10 instead of 15 spectrum elements to estimate model
(note how fit improves for V and V1)
m.10 <- lnre(“gigp”, Dickens.spc, m.max=10)
m.10

experiment with different cost functions
m.mse <- lnre(“gigp”, Dickens.spc, cost=“mse”)
m.mse
m.exact <- lnre(“gigp”, Dickens.spc, cost=“exact”)
m.exact

NLM minimization algorithm is faster but less robust
m.nlm <- lnre(“gigp”, Dickens.spc, method=“NLM”)
m.nlm

ZM and fZM LNRE models have special estimation algorithms
m.zm <- lnre(“zm”, Dickens.spc)
m.zm
m.fzm <- lnre(“fzm”, Dickens.spc)
m.fzm

estimation is much faster if approximations are allowed
m.approx <- lnre("fzm", Dickens.spc, exact=FALSE)
m.approx

specify parameters of LNRE models directly
m <- lnre("zm", alpha=.5, B=.01)
lnre.spc(m, N=1000, m.max=10)

m <- lnre("fzm", alpha=.5, A=1e-6, B=.01)
lnre.spc(m, N=1000, m.max=10)

m <- lnre("gigp", gamma=-.5, B=.01, C=.01)
lnre.spc(m, N=1000, m.max=10)

bootstrapped confidence intervals for model parameters
Not run:
model <- lnre("fzm", spc=BrownAdj.spc, bootstrap=40)
confint(model, "alpha") # Zipf slope
confint(model, "S") # population diversity
confint(model, "S", method="normal") # Gaussian approx works well in this case

speed up with parallelisation (see ?lnre.bootstrap for more information)
model <- lnre("fzm", spc=BrownAdj.spc, bootstrap=40,
 parallel=8) # on Linux / MacOS with 8 available cores
End(Not run)

\section*{lnre.bootstrap}

Parametric bootstrapping for LNRE models (zipfR)

\section*{Description}
This function implements parametric bootstrapping for LNRE models, i.e. it draws a specified number of random samples from the population described by a given \texttt{lnre} object. For each sample, two callback functions are applied to perform transformations and/or extract statistics. In an important application (bootstrapped confidence intervals for model parameters), the first callback estimates a new LNRE model and the second callback extracts the relevant parameters from this model. See ‘Use Cases’ and ‘Examples’ below for other use cases.

\section*{Usage}
\texttt{lnre.bootstrap(model, N, ESTIMATOR, STATISTIC,}
\texttt{replicates=100, sample=c("spc", "tf1", "tokens"),}
\texttt{simplify=TRUE, verbose=TRUE, parallel=1L, seed=NULL, ...)}

\section*{Arguments}
\begin{itemize}
 \item \texttt{model} a trained LNRE model, i.e. an object belonging to a subclass of \texttt{lnre}. The model must provide a \texttt{rlnre} method to generate random samples from the underlying frequency distribution.
\end{itemize}
N a single positive integer, specifying the size \(N \) (i.e. token count) of the individual bootstrap samples

ESTIMATOR a callback function, normally used for estimating LNRE models in the bootstrap procedure. It is called once for each bootstrap sample with the sample as first argument (in the form determined by sample). Additional arguments (\(...\)) are passed on to the callback, so it is possible to use ESTIMATOR=lnre with appropriate settings. If this step is not needed, set ESTIMATOR=identity to pass samples through to the STATISTIC callback.

STATISTIC a callback function, normally used to extract model parameters and other relevant statistics from the bootstrapped LNRE models. It is called once for each bootstrap sample, with the value returned by ESTIMATOR as its single argument. The return values are automatically aggregated across all bootstrap samples (see ‘Value’ below). If this step is not needed, set STATISTIC=identity in order to pass through the results of the ESTIMATOR callback. Note that STATISTIC must not return NULL, which is used internally to signal errors.

replicates a single positive integer, specifying the number of bootstrap samples to be generated

te the form in which each sample is passed to ESTIMATOR: as a frequency spectrum (spc, the default), as a type-frequency list (tfl) or as a factor vector representing the token sequence (tokens). Warning: The latter can be computationally expensive for large \(N \).

Alternatively, a callback function that will be invoked with arguments model and replicates and must return a random sample in the format expected by ESTIMATOR. See ‘Use Cases’ below for typical applications.

simplify if TRUE, use `rbind()` to combine list of results into a single data structure. In this case, the estimator should return either a vector of fixed length or a single-row data frame or matrix. No validation is carried out before attempting the simplification.

verbose if TRUE, show progress bar in R console during the bootstrapping process (which can take a long time). The progress bar may be updated quite infrequently if parallel processing is enabled.

parallel whether to enable parallel processing. Either an integer specifying the number of worker processes to be forked, or a pre-initialised snow cluster created with `makeCluster`; see ‘Details’ below.

seed a single integer value used to initialize the RNG in order to generate reproducible results

... any further arguments are passed through to the ESTIMATOR callback function

Details

The parametric bootstrapping procedure works as follows:

1. replicates random samples of \(N \) tokens each are drawn from the population described by the LNRE model model (possibly using a callback function provided in argument sample)
2. Each sample is passed to the callback function ESTIMATOR in the form determined by sample
(a frequency spectrum, type-frequency list, or factor vector of tokens). If ESTIMATOR fails, it
is re-run with a different sample, otherwise the return value is passed on to STATISTIC. Use
ESTIMATOR=identity to pass the original sample through to STATISTIC.

3. The callback function STATISTIC is used to extract relevant information for each sample. If
STATISTIC fails, the procedure is repeated from step 2 with a different sample. The callback
will typically return a vector of fixed length or a single-row data frame, and the results for all
bootstrap samples are combined into a matrix or data frame if simplify=TRUE.

Warning: Keep in mind that sampling a token vector can be slow and consume large amounts of
memory for very large N (several million tokens). If possible, use sample="spc" or sample="tfl",
which can be generated more efficiently.

Parallelisation

Since bootstrapping is a computationally expensive procedure, it is usually desirable to use parallel
processing. *lnre.bootstrap* supports two types of parallelisation, based on the parallel package:

- On Unix platforms, you can set parallel to an integer number in order to fork the specified
 number of worker processes, utilising multiple cores on the same machine. The detectCores
 function shows how many cores are available, but due to hyperthreading and memory con-
tention, it is often better to set parallel to a smaller value. Note that forking may be unstable
 especially in a GUI environment, as explained on the mcfor k manpage.

- On all platforms, you can pass a pre-initialised *snow* cluster in the argument, which consists
 of worker processes on the same machine or on different machines. A suitable cluster can be
 created with makeCluster; see the parallel package documentation for further information.
 It is your responsibility to set up the cluster so that all required data sets, packages and custom
 functions are available on the worker processes; *lnre.bootstrap* will only ensure that the
 zipfR package itself is loaded.

Note that parallel processing is not enabled by default and will only be used if parallel is set
accordingly.

Value

If simplify=FALSE, a list of length replicates containing the statistics obtained from each indi-
vidual bootstrap sample. In addition, the following attributes are set:

- N = sample size of the bootstrap replicates
- model = the LNRE model from which samples were generated
- errors = number of samples for which either the ESTIMATOR or the STATISTIC callback
 produced an error

If simplify=TRUE, the statistics are combined with rbind(). This is performed unconditionally,
so make sure that STATISTIC returns a suitable value for all samples, typically vectors of the same
length or single-row data frames with the same columns. The return value is usually a matrix or
data frame with replicates rows. No additional attributes are set.
Use cases

Bootstrapped confidence intervals for model parameters: The `confint` method for LNRE models uses bootstrapping to estimate confidence intervals for the model parameters.

For this application, `ESTIMATOR=lnre` re-estimates the LNRE model from each bootstrap sample. Configuration options such as the model type, cost function, etc. are passed as additional arguments in `...`, and the sample must be provided in the form of a frequency spectrum. The return values are successfully estimated LNRE models.

`STATISTIC` extracts the model parameters and other coefficients of interest (such as the population diversity S) from each model and returns them as a named vector or single-row data frame. The results are combined with `simplify=TRUE`, then empirical confidence intervals are determined for each column.

Empirical sampling distribution of productivity measures: For some of the more complex measures of productivity and lexical richness (see `productivity.measures`), it is difficult to estimate the sampling distribution mathematically. In these cases, an empirical approximation can be obtained by parametric bootstrapping.

The most convenient approach is to set `ESTIMATOR=productivity.measures`, so the desired measures can be passed as an additional argument `measures=` to `lnre.bootstrap`. The default `sample="spc"` is appropriate for most measures and is efficient enough to carry out the procedure for multiple sample sizes.

Since the estimator already returns the required statistics for each sample in a suitable format, set `STATISTIC=identity` and `simplify=TRUE`.

Empirical prediction intervals for vocabulary growth curves: Vocabulary growth curves can only be generated from token vectors, so set `sample="tokens"` and keep N reasonably small.

`ESTIMATOR=vec2vgc` compiles `vgc` objects for the samples. Pass `steps` or `stepsize` as desired and set `m.max` if growth curves for V_1, V_2, \ldots are desired.

Either use `STATISTIC=identity` and `simplify=FALSE` to return a list of `vgc` objects, which can be plotted or processed further with `sapply()`. This strategy is particularly useful if one or more V_m are desired in addition to V.

Or use `STATISTIC=function (x) x$V` to extract y-coordinates for the growth curve and combine them into a matrix with `simplify=TRUE`, so that prediction intervals can be computed directly. Note that the corresponding x-coordinates are not returned and have to be inferred from N and `stepsize`.

Simulating non-randomness and mixture distributions: More complex populations and non-random samples can be simulated by providing a user callback function in the `sample` argument. This callback is invoked with parameters `model` and n and has to return a sample of size n in the format expected by `ESTIMATOR`.

For simulating non-randomness, the callback will typically use `rlnre` to generate a random sample and then apply some transformation.

For simulating mixture distributions, it will typically generate multiple samples from different populations and merge them; the proportion of tokens from each population should be determined by a multinomial random variable. Individual populations might consist of LNRE models, or a finite number of “lexicalised” types. Note that only a single LNRE model will be passed to the callback; any other parameters have to be injected as bound variables in a local function definition.
See Also

`lnre` for more information about LNRE models. The high-level estimator function `lnre` uses `lnre.bootstrap` to collect data for approximate confidence intervals; `lnre.productivity.measures` uses it to approximate the sampling distributions of productivity measures.

Examples

```r
## parametric bootstrapping from realistic LNRE model
model <- lnre("zm", spc=ItaRi.spc) # has quite a good fit

## estimate distribution of V, V1, V2 for sample size N=1000
res <- lnre.bootstrap(model, N=1000, replicates=200,
                      ESTIMATOR=identity,
                      STATISTIC=function (x) c(V=V(x), V1=Vm(x,1), V2=Vm(x,2)))
bootstrap.confint(res, method="normal")

## compare with theoretical expectations (EV/EVm = center, VV/VVm = spread^2)
lnre.spc(model, 1000, m.max=2, variances=TRUE)

## lnre.bootstrap() also captures and ignores occasional failures
res <- lnre.bootstrap(model, N=1000, replicates=200,
                      ESTIMATOR=function (x) if (runif(1) < .2) stop() else x,
                      STATISTIC=function (x) c(V=V(x), V1=Vm(x,1), V2=Vm(x,2)))

## empirical confidence intervals for vocabulary growth curve
## (this may become expensive because token-level samples have to be generated)
res <- lnre.bootstrap(model, N=1000, replicates=200, sample="tokens",
                      ESTIMATOR=vec2vgc, stepsize=100, # extra args passed to ESTIMATOR
                      STATISTIC=V) # extract vocabulary sizes at equidistant N
bootstrap.confint(res, method="normal")

## parallel processing is highly recommended for expensive bootstrapping
library(parallel)
cl <- makeCluster(2) # PSOCK cluster, should work on all platforms
res <- lnre.bootstrap(model, N=1e4, replicates=200, sample="tokens",
                      ESTIMATOR=vec2vgc, stepsize=4e3, # extra args passed to ESTIMATOR
                      STATISTIC=V,
                      parallel=cl) # use cluster for parallelisation
bootstrap.confint(res, method="normal")
stopCluster(cl)

## on MacOS / Linux, simpler fork-based parallelisation also works well
## Not run:
res <- lnre.bootstrap(model, N=1e5, replicates=400, sample="tokens",
                      ESTIMATOR=vec2vgc, stepsize=1e4, STATISTIC=V,
                      parallel=8) # if you have enough cores ...
bootstrap.confint(res, method="normal")

## End(Not run)
```
Description

This manpage describes technical details of LNRE models and parameter estimation. It is intended developers who want to implement new LNRE models, improve the parameter estimation algorithms, or work directly with the internals of \texttt{lnre} objects. All information required for standard applications of LNRE models can be found on the \texttt{lnre} manpage.

Details

Most operations on LNRE models (in particular, computation of expected values and variances, distribution function and type distribution, random sampling, etc.) are realized as S3 methods, so they are automatically dispatched to appropriate implementations for the various types of LNRE models (e.g., \texttt{EV.lnre.zm}, \texttt{EV.lnre.fzm} and \texttt{EV.lnre.gigp} for the \texttt{EV} method). For some methods (e.g. estimated variances \texttt{VV} and \texttt{VVm}), a single generic implementation can be used for all model types, provided through the base class (\texttt{VV.lnre} and \texttt{VVm.lnre} for variances).

If you want to implement new LNRE models, have a look at “Implementing LNRE Models” below.

Important note: LNRE model parameters can be passed as named arguments to the \texttt{lnre} constructor function when they are not estimated automatically from an observed frequency spectrum. For this reason, parameter names must be carefully chosen so that they do not clash with other arguments of the \texttt{lnre} function. Note that because of R’s argument matching rules, any parameter name that is a prefix of a standard argument name will lead to such a clash. In particular, single-letter parameters (such as \texttt{b} and \texttt{c} for the GIGP model) should always be written in uppercase (\texttt{B} and \texttt{C} in \texttt{lnre.gigp}).

Value

A LNRE model with estimated (or manually specified) parameter values is represented by an object belonging to a suitable subclass of \texttt{lnre}. The specific class depends on the type of LNRE model, as specified in the \texttt{type} argument to the \texttt{lnre} constructor function (e.g. \texttt{lnre.fzm} for a fZM model selected with \texttt{type="fzm"}).

All subtypes of \texttt{lnre} object share the same data format, viz. a list with the following components:

- \texttt{type} a character string specifying the class of LNRE model, e.g. "fzm" for a finite Zipf-Mandelbrot model
- \texttt{name} a character string specifying a human-readable name for the LNRE model, e.g. "finite Zipf-Mandelbrot"
- \texttt{param} list of named model parameters, e.g. (\texttt{alpha=.8, B=.01}) for a ZM model
- \texttt{param2} a list of "secondary" parameters, i.e. constants that can be determined from the model parameters but are frequently used in the formulae for expected values, variances, etc.; e.g. (\texttt{C=.5}) for the ZM model above
- \texttt{S} population size, i.e. number of types in the population described by the LNRE model (may be \texttt{Inf}, e.g. for a ZM model)
Implementing LNRE Models

In order to implement a new class of LNRE models, the following steps are necessary (illustrated on the example of a lognormal type density function, introducing the new LNRE class `lnre.lognormal`):

- Provide a constructor function for LNRE models of this type (here, `lnre.lognormal`), which must accept the parameters of the LNRE model as named arguments with reasonable default values (or alternatively as a list passed in the `param` argument). The constructor must return a partially initialized object of an appropriate subclass of `lnre` (in `lnre.lognormal` in our example), and make sure that this object also inherits from the `lnre` class.
• Provide the update, transform, print and label utility functions for the LNRE model, which must be returned in the util field of the LNRE model object (see "Value" above).

• Add the new type of LNRE model to the type argument of the generic lnre constructor, and insert the new constructor function (lnre.lognormal) in the switch call in the body of lnre.

• As a minimum requirement, implementations of the EV and EVm methods must be provided for the new LNRE model (in our example, they will be named EV.lnre.lognormal and EVm.lnre.lognormal).

• If possible, provide equations for the type density, probability density, type distribution, distribution function and posterior distribution of the new LNRE model, as implementations of the tdlnre, dlnre, tplnre/tqlnre, plnre/qlnre and postplnre/postqlnre methods for the new LNRE model class. If all these functions are defined, log-scaled densities and random number generation are automatically handled by generic implementations.

• Optionally, provide a custom function for parameter estimation of the new LNRE model, as an implementation of the estimate.model method (here, estimate.model.lnre.lognormal). Custom parameter estimation can considerably improve convergence and goodness-of-fit if it is possible to obtain direct estimates for one or more of the parameters, e.g. from the condition \(E[V] = V \). However, the default Nelder-Mead algorithm is robust and produces satisfactory results, as long as the LNRE model defines an appropriate parameter transformation mapping. It is thus often more profitable to optimize the transform utility than to spend a lot of time implementing a complicated parameter estimation function.

The best way to get started is to take a look at one of the existing implementations of LNRE models. The GIGP model represents a "minimum" implementation (without custom parameter estimation and distribution functions), whereas ZM and fZM provide good examples of custom parameter estimation functions.

See Also

User-level information about LNRE models and parameter estimation can be found on the lnre manpage.

Descriptions of the different LNRE models implemented in zipfR and their parameters are given on separate manpages lnre.zm, lnre.fzm and lnre.gigp. These descriptions are intended for interested end users, but are not required for standard applications of the models.

The estimate.model manpage explains details of the parameter estimation procedure (intended for developers).

See lnre.goodness.of.fit for a description of the goodness-of-fit test performed after parameter estimation of an LNRE model. This function can also be used to evaluate the predictions of the model on a different data set.
Description

The constructor function \texttt{lnre.fzm} is not user-visible. It is invoked implicitly when \texttt{lnre} is called with LNRE model type "fzm".

Usage

\begin{verbatim}
lnre.fzm(alpha=.8, A=1e-9, B=.01, param=list())
user call: lnre("fzm", spc=spc) or lnre("fzm", alpha=.8, A=1e-9, B=.01)
\end{verbatim}

Arguments

\begin{itemize}
\item \textbf{alpha} the shape parameter \(\alpha\), a number in the range \((0, 1)\)
\item \textbf{A} the lower cutoff parameter \(A\), a positive number. Note that a valid set of parameters must satisfy \(0 < A < B\).
\item \textbf{B} the upper cutoff parameter \(B\), a positive number (\(B > 1\) is allowed although it is inconsistent with the interpretation of \(B\))
\item \textbf{param} a list of parameters given as name-value pairs (alternative method of parameter specification)
\end{itemize}

Details

The parameters of the fZM model can either be specified as immediate arguments:

\begin{verbatim}
lnre.fzm(alpha=.5, A=5e-12, B=.1)
\end{verbatim}

or as a list of name-value pairs:

\begin{verbatim}
lnre.fzm(param=list(alpha=.5, A=5e-12, B=.1))
\end{verbatim}

which is usually more convenient when the constructor is invoked by another function (such as \texttt{lnre}). If both immediate arguments and the \texttt{param} list are given, the immediate arguments override conflicting values in \texttt{param}. For any parameters that are neither specified as immediate arguments nor listed in \texttt{param}, the defaults from the function prototype are inserted.

The \texttt{lnre.fzm} constructor also checks the types and ranges of parameter values and aborts with an error message if an invalid parameter is detected.

\textbf{NB:} parameter estimation is faster and more robust for the inexact fZM model, so you might consider passing the \texttt{exact=FALSE} option to \texttt{lnre} unless you intend to make predictions for small sample sizes \(N\) and/or high spectrum elements \(E[V_m(N)]\) \((m \gg 1)\) with the model.
Value

A partially initialized object of class \texttt{lnre.fzm}, which is completed and passed back to the user by the \texttt{lnre} function. See \texttt{lnre} for a detailed description of \texttt{lnre.fzm} objects (as a subclass of \texttt{lnre}).

Mathematical Details

Similar to ZM, the \texttt{fZM model} is a LNRE re-formulation of the \texttt{Zipf-Mandelbrot} law for a population with a finite vocabulary size \(S \), i.e.

\[
\pi_k = \frac{C}{(k + b)^a}
\]

for \(k = 1, \ldots, S \). The parameters of the Zipf-Mandelbrot law are \(a > 1 \), \(b \geq 0 \) and \(S \) (see also Baayen 2001, 101ff). The fZM model is given by the type density function

\[
g(\pi) := C \cdot \pi^{-\alpha-1}
\]

for \(A \leq \pi \leq B \) (and \(\pi = 0 \) otherwise), and has three parameters \(0 < \alpha < 1 \) and \(0 < A < B \leq 1 \). The normalizing constant is

\[
C = \frac{1 - \alpha}{B^{1-\alpha} - A^{1-\alpha}}
\]

and the population vocabulary size is

\[
S = \frac{1 - \alpha}{\alpha} \cdot \frac{A^{-\alpha} - B^{-\alpha}}{B^{1-\alpha} - A^{1-\alpha}}
\]

See Evert (2004) and the \texttt{lnre.zm} manpage for further details.

References

See Also

\texttt{lnre} for pointers to relevant methods and functions for objects of class \texttt{lnre}, as well as a complete listing of LNRE models implemented in the \texttt{zipfR} library.
Description

The Generalized Inverse Gauss-Poisson (GIGP) LNRE model of Sichel (1971).

The constructor function \(\text{lnre.gigp} \) is not user-visible. It is invoked implicitly when \(\text{lnre} \) is called with LNRE model type "gigp".

Usage

\[
\text{lnre.gigp}(\text{gamma}=-.5, B=.01, C=.01, \text{param}=\text{list}())
\]

user call: \(\text{lnre("gigp", spc=spc)} \) or \(\text{lnre("gigp", gamma=-.5, B=.01, C=.01)} \)

Arguments

- **gamma**: the shape parameter \(\gamma \), a negative number in the range \((-1, 0)\). \(\gamma \) corresponds to \(-\alpha\) in the Zipf-Mandelbrot notation.
- **B**: the low-frequency decay parameter \(b \), a non-negative number. This parameter determines how quickly the type density function vanishes for \(\pi \to 0 \), with larger values corresponding to faster decay.
- **C**: the high-frequency decay parameter \(c \), a non-negative number. This parameter determines how quickly the type density function vanishes for large values of \(\pi \), with smaller values corresponding to faster decay.
- **param**: a list of parameters given as name-value pairs (alternative method of parameter specification)

Details

The parameters of the GIGP model can either be specified as immediate arguments:

\[
\text{lnre.gigp}(\text{gamma}=-.47, B=.001, C=.001)
\]

or as a list of name-value pairs:

\[
\text{lnre.gigp}(\text{param}=\text{list}((\text{gamma}=-.47, B=.001, C=.001)))
\]

which is usually more convenient when the constructor is invoked by another function (such as \(\text{lnre} \)). If both immediate arguments and the \text{param} list are given, the immediate arguments override conflicting values in \text{param}. For any parameters that are neither specified as immediate arguments nor listed in \text{param}, the defaults from the function prototype are inserted.
The \texttt{lnre.gigp} constructor also checks the types and ranges of parameter values and aborts with an error message if an invalid parameter is detected.

Notice that the implementation of GIGP leads to numerical problems when estimating the expected frequency of high spectrum elements (you might start worrying if you need to go above \(m = 150 \)).

Note that the parameters \(b \) and \(c \) are normally written in lowercase (e.g. Baayen 2001). For the technical reasons, it was necessary to use uppercase letters \(B \) and \(C \) in this implementation.

Value

A partially initialized object of class \texttt{lnre.gigp}, which is completed and passed back to the user by the \texttt{lnre} function. See \texttt{lnre} for a detailed description of \texttt{lnre.gigp} objects (as a subclass of \texttt{lnre}).

Mathematical Details

Despite its fancy name, the Generalized Inverse Gauss-Poisson or GIGP model belongs to the same class of LNRE models as ZM and fZM. This class of models is characterized by a power-law in the type density function and derives from the Zipf-Mandelbrot law (see \texttt{lnre.zm} for details on the relationship between power-law LNRE models and the Zipf-Mandelbrot law).

The GIGP model is given by the type density function

\[
g(\pi) := C \cdot \pi^{\gamma - 1} \cdot e^{-\frac{\pi c}{b}}
\]

with parameters \(-1 < \gamma < 0\) and \(b, c \geq 0 \). The normalizing constant is

\[
C = \frac{(2/bc)^{\gamma + 1}}{K_{\gamma+1}(b)}
\]

and the population vocabulary size is

\[
S = \frac{2}{bc} \cdot \frac{K_\gamma(b)}{K_{\gamma+1}(b)}
\]

Note that the "shape" parameter \(\gamma \) corresponds to \(-\alpha\) in the ZM and fZM models. The GIGP model was introduced by Sichel (1971). See Baayen (2001, 89-93) for further details.

References

See Also

\texttt{lnre} for pointers to relevant methods and functions for objects of class \texttt{lnre}, as well as a complete listing of LNRE models implemented in the \texttt{zipfR} library.
Description

This function measures the goodness-of-fit of a LNRE model compared to an observed frequency spectrum, using a multivariate chi-squared test (Baayen 2001, p. 119ff).

Usage

```r
lnre.goodness.of.fit(model, spc, n.estimated=0, m.max=15)
```

Arguments

- `model`: an LNRE model object, belonging to a suitable subclass of `lnre`.
- `spc`: an observed frequency spectrum, i.e. an object of class `spc`. This can either be the spectrum on which the model parameters have been estimated, or a different, independent spectrum.
- `n.estimated`: number of parameters of the LNRE model that have been estimated on `spc`. This number is automatically subtracted from the degrees of freedom of the resulting chi-squared statistic. When `spc` is an independent spectrum, `n.estimated` should always be set to the default value of 0.
- `m.max`: number of spectrum elements that will be used to compute the chi-squared statistic. The default value of 15 is also used by Baayen (2001). For small samples, it may be sensible to use fewer spectrum elements, e.g. by setting `m.max=10` or `m.max=5`. Depending on how many degrees of freedom have to be subtracted, `m.max` should not be chosen too low.

Details

By default, the number of spectrum elements included in the calculation of the chi-squared statistic may be reduced automatically in order to ensure that it is not dominated by the sampling error of spectrum elements with very small expected frequencies (which are scaled up due to the small variance of these random variables). As an ad-hoc rule of thumb, spectrum elements V_m with variance less than 5 are excluded, since the normal approximation to their discrete distribution is likely to be inaccurate in this case.

Automatic reduction is disabled when the parameter `m.max` is specified explicitly (use `m.max=15` to disable automatic reduction without changing the default value).

Value

A data frame with one row and the following variables:

- `X2`: value of the multivariate chi-squared statistic X^2
df
- number of degrees of freedom of X^2, corrected for the number of parameters that have been estimated on spc

p
- p-value corresponding to X^2

References

See Also

lnre for more information about LNRE models

Examples

```r
## load spectrum of first 100k Brown tokens
data(Brown100k.spc)

## use this spectrum to compute zm and gigp models
zm <- lnre("zm",Brown100k.spc)
gigp <- lnre("gigp",Brown100k.spc)

## lnre.goodness.of.fit with appropriate n.estimated value produces the same multivariate chi-squared test that is reported in a model summary

## compare:
zm
lnre.goodness.of.fit(zm,Brown100k.spc,n.estimated=2)

gigp
lnre.goodness.of.fit(gigp,Brown100k.spc,n.estimated=3)

## goodness of fit of the 100k models calculated on the whole Brown spectrum (although this is superset of 100k spectrum, let's pretend it is an independent spectrum, and set n.estimated to 0)

data(Brown.spc)

lnre.goodness.of.fit(zm,Brown.spc,n.estimated=0)
lnre.goodness.of.fit(gigp,Brown.spc,n.estimated=0)
```
lnre.productivity.measures

Measures of Productivity and Lexical Richness (zipfR)

Description

Compute expectations of various measures of productivity and lexical richness for a LNRE population.

Usage

lnre.productivity.measures(model, N=NULL, measures, data.frame=TRUE,
 bootstrap=FALSE, method="normal", conf.level=.95, sample=NULL,
 replicates=1000, parallel=1L, verbose=TRUE, seed=NULL)

Arguments

- **model**: an object belonging to a subclass of lnre, representing a LNRE model
- **measures**: character vector naming the productivity measures to be computed (see productivity.measures for details). Names may be abbreviated as long as they remain unique. If unspecified or NULL, all supported measures are included.
- **N**: an integer vector, specifying the sample size(s) \(N \) for which the productivity measures will be calculated. If bootstrap=TRUE, only a single sample size may be specified. \(N \) defaults to the sample size used for estimating \(\text{model} \) if unspecified or set to NULL.
- **data.frame**: if TRUE, the return value is converted to a data frame for convenience in interactive use (default).
- **bootstrap**: if TRUE, use parametric bootstrapping to estimate expectations and confidence intervals for the productivity measures. Otherwise, approximate expectations are obtained directly from the LNRE model (see ‘Details’ below for the approximations and simplifications used).
- **method, conf.level**: type of confidence interval to be estimated by parametric bootstrapping and the requested confidence level; see bootstrap.confint for details.
- **sample**: optional callback function to generate bootstrapping samples; see lnre.bootstrap for details and applications.
- **replicates, parallel, seed, verbose**: if bootstrap=TRUE, these parameters are passed on to lnre.bootstrap to control the bootstrapping procedure; see lnre.bootstrap for documentation. In most cases, it is recommended to set parallel in order to speed up the expensive bootstrapping process.
Details

If bootstrap=FALSE, expected values of the productivity measures are computed based on the following approximations:

- \(V, TTR, R \) and \(P \) are linear transformations of \(V \) or \(V_1 \), so expectations can be obtained directly from the \(EV \) and \(EVm \) methods.
- \(C, k, U \) and \(W \) are nonlinear transformations of \(V \). In this case, the transformation function is approximated by a linear function around \(E[V] \), which is reasonable under typical circumstances.
- \(Hapax, S, \alpha_2 \) and \(H \) are based on ratios of two spectrum elements, in some cases with an additional nonlinear transformation. Expectations are based on normal approximations for \(V \) and \(V_i \) together with a generalisation of Díaz-Francés and Rubio’s (2013: 313) result on the ratio of two independent normal distributions; for a nonlinear transformation the same linear approximation is made as above.
- \(K \) and \(D \) are (nearly) unbiased estimators of the population coefficient \(\delta = \sum_{i=1}^{\infty} \pi_i^2 \) (Simpson 1949: 688).

Approximations used for expected values are explained in detail in Sec. 2.2 of the technical report Inside zipfR.

Value

If bootstrap=FALSE, a numeric matrix or data frame listing approximate expectations of the selected productivity measures, with one row for each sample size \(N \) and one column for each measure. Rows and columns are labelled.

If bootstrap=TRUE, a numeric matrix or data frame with one column for each productivity measure and four rows giving the lower and upper bound of the confidence interval, an estimate of central tendency, and an estimate of spread. See bootstrap.confint for details.

Productivity Measures

See productivity.measures for a list of supported measures with equations and references. The measures Entropy and \(\eta \) are only supported for bootstrap=TRUE.

References

See Also

productivity.measures computes productivity measures from observed data sets. See \texttt{lnre} for further information on LNRE models, and \texttt{lnre.bootstrap} and bootstrap.confint for details on the bootstrapping procedure.
Examples

```r
## plausible model for an author's vocabulary
model <- lnre("fzm", alpha=0.4, B=0.06, A=1e-12)

## approximate expectation for different sample sizes
lnre.productivity.measures(model, N=c(1000, 10000, 50000))

## estimate sampling distribution: 95% interval, mean, s.d.
## (using parametric bootstrapping, only one sample size at a time)
lnre.productivity.measures(model, N=1000, bootstrap=TRUE)
```

`lnre.spc`
Compute Expected Frequency Spectrum of LNRE Model (zipfR)

Description

`lnre.spc` computes the expected frequency spectrum of a LNRE model at specified sample size `N`, returning an object of class `spc`. Since almost all expected spectrum elements are non-zero, only an incomplete spectrum can be generated.

Usage

```r
lnre.spc(model, N=NULL, variances=FALSE, m.max=100)
```

Arguments

- `model`: an object belonging to a subclass of `lnre`, representing a LNRE model
- `N`: a single positive integer, specifying the sample size `N` for which the expected frequency spectrum is calculated (defaults to same sample size as used for estimating the model)
- `variances`: if `TRUE`, include variances for the spectrum elements in the `spc` object
- `m.max`: number of spectrum elements listed in the frequency spectrum. The default of 100 is chosen to avoid numerical problems that certain LNRE models (in particular, GIGP) have for higher `m`. If variance data is included, the default value is automatically reduced to 50.

Details

~~ TODO, if any ~~

Value

An object of class `spc`, representing the incomplete expected frequency spectrum of the LNRE model `lnre` at sample size `N`. If `variances=TRUE`, the spectrum also includes variance data.
See Also

`spc` for more information about frequency spectra and links to relevant functions; `lnre` for more information about LNRE models and how to initialize them.

Examples

```r
## load Dickens dataset and compute lnre models
data(Dickens.spc)
zm <- lnre("zm", Dickens.spc)
fzm <- lnre("fzm", Dickens.spc, exact=FALSE)
gigp <- lnre("gigp", Dickens.spc)

## calculate the corresponding expected frequency spectra at the Dickens size
zm.spc <- lnre.spc(zm, N(Dickens.spc))
fzm.spc <- lnre.spc(fzm, N(Dickens.spc))
gigp.spc <- lnre.spc(gigp, N(Dickens.spc))

## comparative plot
plot(Dickens.spc, zm.spc, fzxm.spc, gigp.spc, m.max=10)

## expected spectra at N=100e+8
## and comparative plot
zm.spc <- lnre.spc(zm, 1e+8)
fzm.spc <- lnre.spc(fzm, 1e+8)
gigp.spc <- lnre.spc(gigp, 1e+8)

plot(zm.spc, fzxm.spc, gigp.spc, m.max=10)

## with variances
zm.spc <- lnre.spc(zm, 1e+8, variances=TRUE)
head(zm.spc)

## asking for more than 50 spectrum elements
## (increasing m.max will eventually lead to error, at different threshold for the different models)
zm.spc <- lnre.spc(zm, 1e+8, m.max=1000)
fzm.spc <- lnre.spc(fzm, 1e+8, m.max=1000)
gigp.spc <- lnre.spc(gigp, 1e+8, m.max=1000)  ## gigp breaks first!
```
Description

Inre.vgc computes expected vocabulary growth curves \(E[V(N)] \) according to a LNRE model, returning an object of class vgc. Data points are returned for the specified values of \(N \), optionally including estimated variances and/or growth curves for the spectrum elements \(E[V_m(N)] \).

Usage

```r
Inre.vgc(model, N, m.max=0, variances=FALSE)
```

Arguments

- **model**: an object belonging to a subclass of Inre, representing a LNRE model
- **N**: an increasing sequence of non-negative integers, specifying the sample sizes \(N \) for which vocabulary growth data should be calculated
- **m.max**: if specified, include vocabulary growth curves \(E[V_m(N)] \) for spectrum elements up to \(m.max \). Must be a single integer in the range 1...9.
- **variances**: if TRUE, include variance estimates for the vocabulary size (and the spectrum elements, if applicable)

Details

~~ TODO, if any ~~

Value

An object of class vgc, representing the expected vocabulary growth curve \(E[V(N)] \) of the LNRE model Inre, with data points at the sample sizes \(N \).

If \(m.max \) is specified, expected growth curves \(E[V_m(N)] \) for spectrum elements (hapax legomena, dis legomena, etc.) up to \(m.max \) are also computed.

If variances=TRUE, the vgc object includes variance data for all growth curves.

See Also

vgc for more information about vocabulary growth curves and links to relevant functions; Inre for more information about LNRE models and how to initialize them

Examples

```r
## load Dickens dataset and estimate lnre models
data(Dickens.spc)
zm <- Inre("zm",Dickens.spc)
fzm <- Inre("fzm",Dickens.spc,exact=FALSE)
gigp <- Inre("gigp",Dickens.spc)
```
compute expected V and V_1 growth up to 100 million tokens
in 100 steps of 1 million tokens
zm.vgc <- lnre.vgc(zm,(1:100)*1e6, m.max=1)
fzm.vgc <- lnre.vgc(fzm,(1:100)*1e6, m.max=1)
gigp.vgc <- lnre.vgc(gigp,(1:100)*1e6, m.max=1)

compare
plot(zm.vgc,fzm.vgc,gigp.vgc,add.m=1,legend=c("ZM","fZM","GIGP"))

load Italian ultra- prefix data
data(ItaUltra.spc)

compute zm model
zm <- lnre("zm",ItaUltra.spc)

compute vgc up to about twice the sample size
with variance of V
zm.vgc <- lnre.vgc(zm,(1:100)*70, variances=TRUE)

plot with confidence intervals derived from variance in
vgc (with larger datasets, ci will typically be almost
invisible)
plot(zm.vgc)

lnre.zm

The Zipf-Mandelbrot (ZM) LNRE Model (zipfR)

Description

The constructor function `lnre.zm` is not user-visible. It is invoked implicitly when `lnre` is called with LNRE model type "zm".

Usage

```
lnre.zm(alpha=.8, B=.01, param=list())
```

user call: `lnre("zm", spc=spc)` or `lnre("zm", alpha=.8, B=.1)`

Arguments

- `alpha` the *shape* parameter α, a number in the range $(0,1)$
- `B` the *upper cutoff* parameter B, a positive number ($B > 1$ is allowed although it is inconsistent with the interpretation of B)
- `param` a list of parameters given as name-value pairs (alternative method of parameter specification)
Details

The parameters of the ZM model can either be specified as immediate arguments:

\[\text{lnre.zm}(\text{alpha}=0.5, \ B=0.1) \]

or as a list of name-value pairs:

\[\text{lnre.zm}(\text{param}=\text{list}(\text{alpha}=0.5, \ B=0.1)) \]

which is usually more convenient when the constructor is invoked by another function (such as \text{lnre}). If both immediate arguments and the param list are given, the immediate arguments override conflicting values in param. For any parameters that are neither specified as immediate arguments nor listed in param, the defaults from the function prototype are inserted.

The \text{lnre.zm} constructor also checks the types and ranges of parameter values and aborts with an error message if an invalid parameter is detected.

Value

A partially initialized object of class \text{lnre.zm}, which is completed and passed back to the user by the \text{lnre} function. See \text{lnre} for a detailed description of \text{lnre.zm} objects (as a subclass of \text{lnre}).

Mathematical Details

The ZM model is a re-formulation of the Zipf-Mandelbrot law

\[\pi_k = \frac{C}{(k+b)^a} \]

with parameters \(a > 1 \) and \(b \geq 0 \) (see also Baayen 2001, 101ff) as a LNRE model. It is given by the type density function

\[g(\pi) := C \cdot \pi^{-\alpha-1} \]

for \(0 \leq \pi \leq B \) (and \(\pi = 0 \) otherwise), with the parameters \(0 < \alpha < 1 \) and \(0 < B \leq 1 \). The normalizing constant is

\[C = \frac{1 - \alpha}{B^{1-\alpha}} \]

and the population vocabulary size is \(S = \infty \). The parameters of the ZM model are related to those of the original Zipf-Mandelbrot law by \(a = 1/\alpha \) and \(b = (1 - \alpha)/(B \cdot \alpha) \). See Evert (2004) for further details.

References

See Also

`lnre` for pointers to relevant methods and functions for objects of class `lnre`, as well as a complete listing of LNRE models implemented in the `zipfR` library.

LNRE_posterior

Posterior Distribution of LNRE Model (zipfR)

Description

Posterior distribution over the type probability space of a LNRE model, given the observed frequency \(m \) in a sample. Posterior density (\(\text{postdlnre} \)) and log-transformed density (\(\text{postldlnre} \)) can be computed for all LNRE models. The distribution function (\(\text{postplnre} \)) and quantiles (\(\text{postqlnre} \)) are only available for selected types of models.

Usage

```
postdlnre(model, x, m, N, ...)
postldlnre(model, x, m, N, base=10, log.x=FALSE, ...)
postplnre(model, q, m, N, lower.tail=FALSE, ...)
postqlnre(model, p, m, N, lower.tail=FALSE, ...)
```

Arguments

- `model` an object belonging to a subclass of `lnre`, representing an LNRE model
- `m` frequency \(m \) of a type in the observed sample
- `N` sample size \(N \)
- `x` vector of type probabilities \(p_i \) for which the posterior density function is evaluated
- `q` vector of type probability quantiles, i.e. threshold values \(\rho \) on the type probability axis
- `p` vector of tail probabilities
- `base` positive number, the base \(a \) with respect to which the log-transformation is performed (see "Details" below)
- `log.x` if TRUE, the values passed in the argument `x` are assumed to be logarithmic, i.e. \(\log_a \pi \)
- `lower.tail` if TRUE, lower tail probabilities or type counts are returned / expected in the `p` argument. Note that the defaults differ for distribution function and type distribution, and see "Details" below.
- `...` further arguments are passed through to the method implementations (currently unused)
merge.tfl

Value

A vector of non-negative numbers of the same length as the second argument \((x, p \text{ or } q)\).

\texttt{postdlnre} returns the posterior type density \(P(\pi | f = m)\) for the values of \(\pi\) specified in the vector \(x\). \texttt{postplnre} computes the posterior type distribution function \(P(\pi \geq \rho | f = m)\) (default) or its complement \(P(\pi \leq \rho | f = m)\) (if \texttt{lower.tail=TRUE}). These correspond to \(E[V_{m,\geq\rho}]\) and \(E[V_{m,\rho}]\), respectively (Evert 2004, p. 123). \texttt{postqlnre} returns quantiles, i.e. the inverse of the posterior type distribution function.

\texttt{postldlnre} computes a logarithmically transformed version of the posterior type density, taking logarithms with respect to the base \(a\) specified in the base argument (default: \(a = 10\)). Such log-transformed densities are useful for visualizing distributions, see \texttt{ldlnre} for more information.

See Also

\texttt{lnre} for more information about LNRE models and how to initialize them, \texttt{LNRE} for type density and distribution functions (which represent the prior distribution).

Examples

```r
## TODO
```

Merging Type Frequency Lists (zipfR)

Description

Merge two or more type frequency lists. Types from the individual lists are pooled and frequencies of types occurring in multiple lists are aggregated.

Usage

```r
## S3 method for class 'tfl'
merge(x, y, ...)
```

Arguments

- \(x, y\) type frequency lists (i.e. objects of class \texttt{tfl})
- \(\ldots\) optional further type frequency lists to be merged

Details

All type frequency lists to be merged must contain type labels, and none of them may be incomplete.
See Also
tf1 for more information about type frequency lists.

Description
N, V and Vm are generic methods that can (and should) be used to access observed frequency data for objects of class tf1, spc, vgc and lnre. The precise behaviour of the functions depends on the class of the object, but in general N returns the sample size, V the vocabulary size, and Vm one or more selected elements of the frequency spectrum.

Usage

\[
\begin{align*}
N(\text{obj}, \ldots) \\
V(\text{obj}, \ldots) \\
Vm(\text{obj}, m, \ldots)
\end{align*}
\]

Arguments

<table>
<thead>
<tr>
<th>obj</th>
<th>an object of class tf1 (type frequency list), spc (frequency spectrum), vgc (vocabulary growth curve) or lnre (LNRE model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>positive integer value determining the frequency class (m) to be returned (or a vector of such values).</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments passed on to the method implementation (see respective manpages for details)</td>
</tr>
</tbody>
</table>

Details

For tf1 and vgc objects, the Vm method allows only a single value \(m \) to be specified.

Value

For a frequency spectrum (class spc), \(N \) returns the sample size, \(V \) returns the vocabulary size, and \(Vm \) returns individual spectrum elements.

For a type frequency list (class tf1), \(N \) returns the sample size and \(V \) returns the vocabulary size corresponding to the list. \(Vm \) returns a single spectrum element from the corresponding frequency spectrum, and may only be called with a single value \(m \).

For a vocabulary growth curve (class vgc), \(N \) returns the vector of sample sizes and \(V \) the vector of vocabulary sizes. \(Vm \) may only be called with a single value \(m \) and returns the corresponding vector from the vgc object (if present).

For a LNRE model (class lnre) estimated from an observed frequency spectrum, the methods \(N \), \(V \) and \(Vm \) return information about this frequency spectrum.
See Also

For details on the implementations of these methods, see `N.tfl`, `N.spc`, `N.vgc`, etc. When applied to an LNRE model, the methods return information about the observed frequency spectrum from which the model was estimated, so the manpages for `N.spc` are relevant in this case.

Expected vocabulary size and frequency spectrum for a sample of size N according to a LNRE model can be computed with the analogous methods `EV` and `EVM`. The corresponding variances are obtained with the `VV` and `VVm` methods, which can also be applied to expected or interpolated frequency spectra and vocabulary growth curves.

Examples

```r
## load Brown spc and tfl
data(Brown.spc)
data(Brown.tfl)

## you can extract N, V and Vm (for a specific m)
## from either structure
N(Brown.spc)
N(Brown.tfl)

V(Brown.spc)
V(Brown.tfl)

Vm(Brown.spc,1)
Vm(Brown.tfl,1)

## you can extract the same info also from a lnre model estimated
## from these data (NB: these are the observed quantities; for the
## expected values predicted by the model use EV and EVM instead!)
model <- lnre("gigp",Brown.spc)
N(model)
V(model)
Vm(model,1)

## Baayen's P:
Vm(Brown.spc,1)/N(Brown.spc)

## when input is a spectrum (and only then) you can specify a vector
## of m's; e.g., to obtain class sizes of first 5 spectrum elements
## you can write:
Vm(Brown.spc,1:5)

## the Brown vgc
data(Brown.emp.vgc)

## with a vgc as input, N, V and Vm return vectors of the respective
## values for each sample size listed in the vgc
Ns <- N(Brown.emp.vgc)
Vs <- V(Brown.emp.vgc)
V1s <- Vm(Brown.emp.vgc,1)
```
head(Ns)
head(Vs)
head(V1s)

since the last sample size in Brown.emp.vgc
corresponds to the full Brown, the last elements
of the Ns, Vs and V1s vectors are the same as
the quantities extracted from the spectrum and
tf1:
Ns[length(Ns)]
Vs[length(Vs)]
V1s[length(V1s)]

N-V-Vm.spc Access Methods for Frequency Spectra (zipfR)

Description

Return the sample size (N.spc), vocabulary size (V.spc) and class sizes (Vm.spc) of the frequency spectrum represented by a spc object. For an expected spectrum with variance information, VV.spc returns the variance of the expected spectrum size and VVm.spc the variances of individual spectrum elements.

Note that these functions are not user-visible. They can be called implicitly through the generic methods N, V, Vm, VV and VVm, applied to an object of type spc.

Usage

```r
## S3 method for class 'spc'
N(obj, ...)

## S3 method for class 'spc'
V(obj, ...)

## S3 method for class 'spc'
Vm(obj, m, ...)

## S3 method for class 'spc'
VV(obj, N=NA, ...)

## S3 method for class 'spc'
VVm(obj, m, N=NA, ...)
```
Arguments

obj
an object of class spc, representing an observed or expected frequency spectrum
m
positive integer value determining the frequency class \(m \) to be returned (or a vector of such values).
N
not applicable (this argument of the generic method is not used by the implementation for spc objects and must not be specified)

Details

\(VV \), \(\text{spc} \) a \(VVm \), \(\text{spc} \) will fail if the object \(\text{obj} \) is not an expected frequency spectrum with variance data.

For an incomplete frequency spectrum, \(Vm \), \(\text{spc} \) (and \(VVm \), \(\text{spc} \)) will return \(\text{NA} \) for all spectrum elements that are not listed in the object (i.e. for \(m > m_{\text{max}} \)).

Value

\(N \), \(\text{spc} \) returns the sample size \(N \), \(V \), \(\text{spc} \) returns the vocabulary size \(V \) (or expected vocabulary size \(E[V] \)), and \(Vm \), \(\text{spc} \) returns a vector of class sizes \(V_m \) (or the expected spectrum elements \(E[V_m] \)).

For an expected spectrum with variances, \(VV \), \(\text{spc} \) returns the variance \(\text{Var}[V] \) of the expected vocabulary size, and \(VVm \), \(\text{spc} \) returns variances \(\text{Var}[V_m] \) of the spectrum elements.

See Also

\(N \), \(V \), \(Vm \), \(VV \), \(VVm \) for the generic methods and links to other implementations
\(\text{spc} \) for details on frequency spectrum objects and links to other relevant functions

Description

Return the sample size (\(N.tfl \)) and vocabulary size (\(V.tfl \)) of the type frequency list represented by a \(tfl \) object, as well as class sizes (\(Vm.tfl \)) of the corresponding frequency spectrum.

Note that these functions are not user-visible. They can be called implicitly through the generic methods \(N \), \(V \) and \(Vm \), applied to an object of type \(tfl \).

Usage

```r
## S3 method for class 'tfl'
N(obj, ...)

## S3 method for class 'tfl'
V(obj, ...)
```
S3 method for class 'tfl'

```
Vm(obj, m, ...)
```

Arguments

- `obj` an object of class `tfl`, representing an observed type frequency list
- `m` non-negative integer value determining the frequency class `m` to be returned
- `...` additional arguments passed on from generic method will be ignored

Details

Only a single value is allowed for `m`, which may also be 0. In order to obtain multiple class sizes `V_m`, convert the type frequency list to a frequency spectrum with `tfl2spc` first.

For an incomplete type frequency list, `Vm.obj` will return `NA` if `m` is outside the range of listed frequencies (i.e. for `m < f.min` or `m > f.max`).

Value

- `N.tfl` returns the sample size `N`, `V.tfl` returns the vocabulary size `V` (or expected vocabulary size $E[V]$), and `Vm.tfl` returns the number of types that occur exactly `m` times in the sample, i.e. the class size `V_m`.

See Also

- `N`, `V`, `Vm` for the generic methods and links to other implementations
- `tfl` for details on type frequency list objects and links to other relevant functions

Description

Return the vector of sample sizes (`N.vgc`), vocabulary sizes (`V.vgc`) or class sizes (`Vm.vgc`) from the vocabulary growth curve (VGC) represented by a `vgc` object. For an expected or interpolated VGC with variance information, `VV.vgc` returns the vector of variances of the vocabulary size and `VVm.vgc` the variance vectors for individual spectrum elements.

Note that these functions are not user-visible. They can be called implicitly through the generic methods `N`, `V`, `Vm`, `VV` and `VVm`, applied to an object of type `vgc`.

Usage

S3 method for class 'vgc'
N(obj, ...)

S3 method for class 'vgc'
V(obj, ...)

S3 method for class 'vgc'
Vm(obj, m, ...)

S3 method for class 'vgc'
VV(obj, N=NA, ...)

S3 method for class 'vgc'
VVm(obj, m, N=NA, ...)

Arguments

obj an object of class vgc, representing an observed, interpolated or expected VGC
m positive integer value determining the frequency class m for which the vector of
class sizes is returned
N not applicable (this argument of the generic method is not used by the imple-
mentation for vgc objects and must not be specified)
... additional arguments passed on from generic method will be ignored

Details

VV.vgc and VVm.vgc will fail if the object obj does not include variance data. Vm.vgc and VVm.vgc
will fail if the selected frequency class is not included in the VGC data.

Value

$N.vgc$ returns the vector of sample sizes N, $V.vgc$ returns the corresponding vocabulary sizes $V(N)$
(or expected vocabulary sizes $E[V(N)]$), and $Vm.vgc$ returns the vector of class sizes $V_m(N)$ (or
the expected spectrum elements $E[V_m(N)]$) for the selected frequency class m.

For an expected or interpolated VGC with variance information, $VV.vgc$ returns the vector of variances
$Var[V(N)]$ of the expected vocabulary size, and $VVm.vgc$ returns vector of variances
$Var[V_m(N)]$ for the selected frequency class m.

Except for $N.vgc$, the vector returned will be labelled with corresponding sample sizes.

See Also

N, V, Vm, VV, VVm for the generic methods and links to other implementations
vgc for details on vocabulary growth curve objects and links to other relevant functions
plot.lnre

Plot LNRE Population Distribution (zipfR)

Description
Visualisation of LNRE population distribution, showing either the (log-transformed) type or probability density function or the cumulative probability distribution function.

Usage
```
## S3 method for class 'lnre'
plot(x, y, ...,
    type=c("types", "probability", "cumulative"),
    xlim=c(1e-9, 1), ylim=NULL, steps=200,
    xlab=NULL, ylab=NULL, legend=NULL, grid=FALSE,
    main="LNRE Population Distribution",
    lty=NULL, lwd=NULL, col=NULL, bw=zipfR.par("bw"))
```

Arguments
- `x, y, ...` one or more objects of class `lnre`, containing trained LNRE models describing the population(s) to be plotted. Alternatively, all models can be passed as a list in the `x` argument if the method is called explicitly (see 'Examples').
- `type` what type of plot should be drawn, "types" for the log-transformed type density function, "probability" for the log-transformed probability density function, and "cumulative" for the cumulative probability distribution.
- `xlim, ylim` visible range on x- and y-axis. The default `ylim` is [0, 1] for `type="cumulative"` and automatically chosen to fit the selected density curves for `type="density"`. Note that the x-axis is always logarithmic and `xlim` should be chosen accordingly.
- `steps` number of steps for drawing curves (increase for extra smoothness)
- `xlab, ylab` labels for the x-axis and y-axis (with suitable defaults depending on `type`)
- `legend` optional vector of character strings or expressions specifying labels for a legend box, which will be drawn in the upper right-hand or left-hand corner of the screen. If `legend=TRUE`, labels showing model type and parameters are automatically generated.
- `grid` whether to display a suitable grid in the background of the plot
- `main` a character string or expression specifying a main title for the plot
- `lty, lwd, col` style vectors that can be used to override the global styles defined by `zipfR.par`. If these vectors are specified, they must contain at least as many elements as the number of populations shown in the plot: the values are not automatically recycled.
- `bw` if TRUE, draw plot in B/W style (default is the global `zipfR.par` setting)
Details

There are two useful ways of visualising a LNRE population distribution, selected with the `type` argument:

- **types** A plot of the type density function \(g(\pi) \) over the type probability \(\pi \) on a log-transformed scale (so that the number of types corresponds to an integral over \(\log_{10} \pi \), see `ltdlnre`). The log transformation is essential so that the density function remains in a reasonable range; a logarithmic y-axis would be very counter-intuitive. Note that density values correspond to the number of types per order of magnitude on the x-axis.

- **probability** A plot of the probability density function \(\pi g(\pi) \) over the type probability \(\pi \) on a log-transformed scale (so that probability mass corresponds to an integral over \(\log_{10} \pi \), see `ldlnre`). Note that density values correspond to the total probability mass of types across one order of magnitude on the x-axis.

- **cumulative** A plot of the cumulative probability distribution, i.e. the distribution function \(F(\rho) = P(\pi \leq \rho) \) showing the total probability mass of types with type probability \(\pi \leq \rho \). The x-axis shows \(\rho \) on a logarithmic scale (but is labelled more intuitively with \(\pi \) by default). No special transformations are required because \(0 \leq F(\rho) \leq 1 \).

Line styles are defined globally through `zipfR.par`, but can be overridden with the optional parameters `lty`, `lwd` and `col`. In most cases, it is more advisable to change the global settings temporarily for a sequence of plots, though.

The `bw` parameter is used to switch between B/W and colour modes. It can also be set globally with `zipfR.par`.

Other standard graphics parameters (such as `cex` or `mar`) cannot be passed to the plot function and need to be set up with `par` in advance.

See Also

`lnre, ltdlnre, plnre, zipfR.par, zipfR.plotutils`

`plot.tfl` offers a different visualisation of the LNRE population distribution, in the form of a Zipf-Mandelbrot law rather than type density.

Examples

```r
## visualise three LNRE models trained on same data
m1 <- lnre("zm", Dickens.spc)
m2 <- lnre("fzm", Dickens.spc)
m3 <- lnre("gigp", Dickens.spc)
plot(m1, m2, m3, type="types",
     xlim=c(1e-8, 1e-2), ylim=c(0, 7.5e4), legend=TRUE)
plot(m1, m2, m3, type="probability",
     xlim=c(1e-8, 1e-2), grid=TRUE, legend=TRUE)
## cumulative probability distribution is not available for GIGP
plot(m1, m2, type="cumulative", grid=TRUE,
     xlim=c(1e-8, 1e-2), legend=c("ZM", "fZM"))
## first argument can also be a list of models with explicit call
```
models <- lapply(seq(.1, .9, .2),
 function (x) lnre("zm", alpha=x, B=.1))
plot.lnre(models, type="cum", grid=TRUE, legend=TRUE)
plot.lnre(models, type="prob", grid=TRUE, legend=TRUE)

plot.spc

Plot Word Frequency Spectra (zipfR)

Description

Plot a word frequency spectrum, or a comparison of several word frequency spectra, either as a side-by-side barplot or as points and lines on various logarithmic scales.

Usage

S3 method for class 'spc'
plot(x, y, ...,
m.max=if (log=="") 15 else 50,
log="", conf.level=.95,
bw=zipfR.par("bw"), points=TRUE,
xlim=NULL, ylim=NULL,
xlab="m", ylab="V_m", legend=NULL,
main="Frequency Spectrum",
barcol=NULL, pch=NULL, lty=NULL, lwd=NULL, col=NULL)

Arguments

x, y, ... one or more objects of class spc, representing observed or expected frequency spectra to be plotted. Alternatively, all spectra can be passed as a list in the x argument if the method is called explicitly (see 'Examples'.

m.max number of frequency classes that will be shown in plot. The default is 15 on linear scale and 50 when using any type of logarithmic scale.

log a character string specifying the axis or axes for which logarithmic scale is to be used ("x", "y", or "xy"), similar to the log argument of plot.default. By default, a barplot on linear scale is displayed. Use log="" to show non-logarithmic points-and-lines plot (also see "Details" below).

conf.level confidence level for confidence intervals in logarithmic plots (see "Details" below). The default value of .95 produces 95%-confidence intervals. Set to NA in order to suppress confidence interval markers.

bw if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

points if TRUE, spectrum plots on any type of logarithmic scale are drawn as overplotted lines and points (default). Otherwise, they are drawn as lines with different styles.

xlim, ylim visible range on x- and y-axis. The default values are automatically determined to fit the selected data in the plot.
plot.spc

xlab, ylab
labels for the x-axis and y-axis. The default values nicely typeset mathematical expressions. The y-axis label also distinguishes between observed and expected frequency spectra.

main
a character string or expression specifying a main title for the plot

legend
optional vector of character strings or expressions, specifying labels for a legend box, which will be drawn in the upper right-hand corner of the screen. If legend is given, its length must correspond to the number of frequency spectra in the plot.

barcol, pch, lty, lwd, col
style vectors that can be used to override the global styles defined by \texttt{zipfR.par}. If these vectors are specified, they must contain at least as many elements as there are frequency spectra in the plot: the values are \textit{not} automatically recycled.

Details

By default, the frequency spectrum or spectra are represented as a barplot, with both axes using linear scale. If the \texttt{log} parameter is given, the spectra are shown either as lines in different styles (points=\texttt{FALSE}) or as overplotted points and lines (point=\texttt{TRUE}). The value of \texttt{log} specifies which axes should use logarithmic scale (specify \texttt{log=""} for a points-and-lines plot on linear scale).

In y-logarithmic plots, frequency classes with $V_m = 0$ are drawn outside the plot region (below the bottom margin) rather than skipped.

In all logarithmic plots, confidence intervals are indicated for expected frequency spectra with variance data (by vertical lines with T-shaped hooks at both ends). The size of the confidence intervals is controlled by the \texttt{conf.level} parameter (default: 95%). Set \texttt{conf.level=NA} in order to suppress the confidence interval indicators.

Line and point styles, as well as bar colours in the barplot, can be defined globally with \texttt{zipfR.par}. They can be overridden locally with the optional parameters \texttt{barcol}, \texttt{pch}, \texttt{lty}, \texttt{lwd} and \texttt{col}, but this should only be used when absolutely necessary. In most cases, it is more advisable to change the global settings temporarily for a sequence of plots.

The \texttt{bw} parameter is used to switch between B/W and colour modes. It can also be set globally with \texttt{zipfR.par}.

See Also

\texttt{spc, lnre, lnre.spc, plot.tfl, plot.vgc, zipfR.par, zipfR.plotutils}

Examples

```r
## load Italian ultra- prefix data
data(ItaUltra.spc)

## plot spectrum
plot(ItaUltra.spc)

## logarithmic scale for m (more elements are plotted)
plot(ItaUltra.spc, log="x")

## just lines
```
plot(ItaUltra.spc, log="x", points=FALSE)

just the first five elements, then the first 100
plot(ItaUltra.spc, m.max=5)
plot(ItaUltra.spc, m.max=100, log="x")

compute zm model and expected spectrum
zm <- lnre("zm", ItaUltra.spc)
zm.spc <- lnre.spc(zm, N(ItaUltra.spc))

compare observed and expected spectra (also
in black and white to print on papers)
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"))
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"), bw=TRUE)
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"), log="x")
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"), log="x", bw=TRUE)

re-generate expected spectrum with variances
zm.spc <- lnre.spc(zm, N(ItaUltra.spc), variances=TRUE)

now 95% ci is shown in log plot
plot(zm.spc, log="x")

different title and labels
plot(zm.spc, log="x", main="Expected Spectrum with Confidence Interval",
 xlab="spectrum elements", ylab="expected type counts")

can pass list of spectra in first argument with explicit call
plot.spc(Baayen2001[1:7], m.max=6, legend=names(Baayen2001)[1:7])

plot.tfl

plot.tfl

Plot Type-Frequency List / Zipf Ranking (zipfR)

Description

Zipf ranking plot of a type-frequency list, or comparison of several Zipf rankings, on linear or logarithmic scale.

Usage

```r
## S3 method for class 'tfl'
plot(x, y, ..., 
     min.rank=1, max.rank=NULL, log="", 
     type=c("p", "l", "b", "o", "s"), 
     xlim=NULL, ylim=NULL, freq=TRUE, 
     xlab="rank", ylab="frequency", legend=NULL, grid=FALSE, 
     main="Type-Frequency List (Zipf ranking)", 
     bw=zipfR.par("bw"), cex=1, steps=200, 
     pch=NULL, lty=NULL, lwd=NULL, col=NULL)
```
Arguments

x, y, ... one or more objects of class tfl, containing the type frequency list(s) to be plotted. LNRE models of class lnre can also be specified to display the corresponding population Zipf rankings (see ‘Details’ for more information). It is also possible to pass all objects as a list in argument x, but the method needs to be called explicitly in this case (see ‘Examples’).

min.rank, max.rank
range of Zipf ranks to be plotted for each type-frequency list. By default, all ranks are shown.

log
a character string specifying the axis or axes for which logarithmic scale is to be used ("x", "y", or "xy"), similar to the log argument of plot.default.

type
what type of plot should be drawn. Types p (points), l (lines), b (both) and o (points over lines) are the same as in plot.default. Type s plots a step function with type frequencies corresponding to right upper corners (i.e. type S in plot); it is recommended for plotting full type-frequency lists and can be much more efficient than the other types. See ‘Details’ below.

xlim, ylim
visible range on x- and y-axis. The default values are automatically determined to fit the selected data in the plot.

freq
if freq=FALSE, plot relative frequency (per million words) instead of absolute frequency on the y-axis. This is useful for comparing type-frequency lists with different sample size and is required for plotting LNRE populations.

xlab, ylab
labels for the x-axis and y-axis.

legend
optional vector of character strings or expressions, specifying labels for a legend box, which will be drawn in the upper right-hand corner of the screen. If legend is given, its length must correspond to the number of type-frequency lists in the plot.

grid
whether to display a suitable grid in the background of the plot (only for logarithmic axis)

main
a character string or expression specifying a main title for the plot

bw
if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

cex
scaling factor for plot symbols (types "p", "b" and "o"). This scaling factor is not applied to other text elements in the plot; use par for this purpose.

steps
number of steps for drawing population Zipf rankings of LNRE models. These are always drawn as lines (regardless of type) and are not aligned with integer type ranks (because the LNRE models are actually continuous approximations).

pch, lty, lwd, col
style vectors that can be used to override the global styles defined by zipfR.par. If these vectors are specified, they must contain at least as many elements as the number of type-frequency lists shown in the plot: the values are not automatically recycled.

Details

The type-frequency lists are shown as Zipf plots, i.e. scatterplots of the Zipf-ranked frequencies on a linear or logarithmic scale. Only a sensible subset of the default plotting styles described in plot
are supported: p (points), l (lines), b (both, with a margin around points), o (both overplotted) and s (stair steps, but actually of type S).

For plotting complete type-frequency lists from larger samples, type s is strongly recommended. It aggregates all types with the same frequency and is thus much more efficient than the other plot types. Note that the points shown by the other plot types coincide with the the right upper corners of the stair steps.

Trained LNRE models can also be included in the plot, but only with freq=FALSE. In this case, the corresponding population Zipf rankings are displayed as lines (i.e. always type l, regardless of the type parameter). The lines are intended to be smooth and are not aligned with integer type ranks in order to highlight the fact that LNRE models are continuous approximations of the discrete population.

Line and point styles are defined globally through zipfR.par, but can be overridden with the optional parameters pch, lty, lwd and col. In most cases, it is more advisable to change the global settings temporarily for a sequence of plots, though.

The bw parameter is used to switch between B/W and colour modes. It can also be set globally with zipfR.par.

See Also
tfl, vec2tfl, rlnre, spc2tfl, plot.spc, plot.vgc, plot.lnre, zipfR.par, zipfR.plotutils

Examples

```r
## plot tiny type-frequency lists (N = 100) for illustration
tfl1 <- vec2tfl(EvertLuedeling2001$bar[1:100])
tfl2 <- vec2tfl(EvertLuedeling2001$lein[1:100])
plot(tfl1, type="b")
plot(tfl1, type="b", log="xy")
plot(tfl1, tfl2, legend=c("bar", "lein"))

## realistic type-frequency lists (type="s" recommended for efficiency)
tfl1 <- spc2tfl(BrownImag.spc)
tfl2 <- spc2tfl(BrownInform.spc)
plot(tfl1, tfl2, log="xy", type="s",
     legend=c("fiction", "non-fiction"), grid=TRUE)

## always use freq=FALSE to compare samples of different size
plot(tfl1, tfl2, log="xy", type="s", freq=FALSE,
     legend=c("fiction", "non-fiction"), grid=TRUE)

## show Zipf-Mandelbrot law fitted to low end of frequency spectrum
ml <- lnre("zm", BrownInform.spc)
m2 <- lnre("fzm", BrownInform.spc)
plot(tfl1, tfl2, ml, m2, log="xy", type="s", freq=FALSE, grid=TRUE,
     legend=c("fiction", "non-fiction", "ZM", "fZM"))

## call plot.tfl explicitly if only LNRE populations are displayed
plot.tfl(ml, m2, max.rank=1e5, freq=FALSE, log="xy")

## first argument can then also be a list of TFLs and/or LNRE models
plot.tfl(lapply(EvertLuedeling2001, vec2tfl), log="xy", type="s", freq=FALSE,
```
Description

Plot a vocabulary growth curve (i.e., $V(N)$ or $V_m(N)$ against N), or a comparison of several vocabulary growth curves.

Usage

```r
## S3 method for class 'vgc'
plot(x, y, ...,
     m=NULL, add.m=NULL, N0=NULL,
     conf.level=.95, conf.style=c("ticks", "lines"),
     log=c("", "x", "y", "xy"),
     bw=zipfR.par("bw"),
     xlim=NULL, ylim=NULL,
     xlab="N", ylab="V(N)", legend=NULL,
     main="Vocabulary Growth",
     lty=NULL, lwd=NULL, col=NULL)
```

Arguments

- **x, y, ...**
 - one or more objects of class vgc, representing observed or expected vocabulary growth curves to be plotted. Alternatively, all VGCs can be passed as a list in the `x` argument if the method is called explicitly (see ‘Examples’).

- **m**
 - a single integer m in the range 1...9. If specified, graphs will be plotted for $V_m(N)$ instead of $V(N)$ (the default). Note that all vgc objects to be plotted must contain the necessary data in this case.

- **add.m**
 - a vector of integers in the range 1...9. If specified, graphs for $V_m(N)$ will be added as thin lines to the default $V(N)$ curve, for all specified frequency classes m. This option cannot be combined with the `m` option above. See "Details" below.

- **N0**
 - if specified, draw a dashed vertical line at $N = N_0$, indicating the sample size where a LNRE model has been estimated (this is never done automatically)

- **log**
 - a character string specifying the axis or axes for which logarithmic scale is to be used ("x", "y", or "xy"), similar to the `log` argument of `plot.default`. By default, both axes use linear scale (also see "Details" below).

- **conf.level**
 - confidence level for confidence intervals around expected vocabulary growth curves (see "Details" below). The default value of .95 produces 95%-confidence intervals. Set to NA in order to suppress confidence interval markers.
conf.style

if "ticks", confidence intervals are indicated by vertical lines at each data point in the vgc object (default). If "lines", confidence intervals are indicated by thin curves above and below the VGC (which may be difficult to see when plotting multiple VGCs). Notice that confidence intervals might be so narrow as to be invisible in plots (one way to visualize them in such case might be to set an extremely conservative confidence level, such as .9999).

bw

if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

xlim, ylim

visible range on x- and y-axis. The default values are automatically determined to fit the selected data in the plot.

xlab, ylab

labels for the x-axis and y-axis. The default values nicely typeset mathematical expressions. The y-axis label also distinguishes between observed and expected vocabulary growth curves, as well as between $V(N)$ and $V_m(N)$.

main

a character string or expression specifying a main title for the plot

legend

optional vector of character strings or expressions, specifying labels for a legend box, which will be drawn in the lower right-hand corner of the screen. If legend is given, its length must correspond to the number of VGCs in the plot.

lty, lwd, col

style vectors that can be used to override the global styles defined by zipfR.par. If these vectors are specified, they must contain at least as many elements as there are VGCs in the plot: the values are not automatically recycled.

Details

By default, standard vocabulary growth curves are plotted for all specified vgc objects, i.e. graphs of $V(N)$ against N. If m is specified, growth curves for hapax legomena or other frequency classes are shown instead, i.e. graphs of $V_m(N)$ against N. In this case, all vgc objects must contain the necessary data for $V_m(N)$.

Alternatively, the option add.m can be used to display growth curves for one or more spectrum elements in addition to the standard VGCs. These growth curves are plotted as thinner lines, otherwise matching the styles of the main curves. Since such plots can become fairly confusing and there is no finer control over the styles of the additional curves, it is generally not recommended to make use of the add.m option.

Confidence intervals are indicated for expected vocabulary growth curves with variance data, either by short vertical lines (conf.style="ticks", the default) or by thin curves above and below the main growth curve (conf.style="lines"). The size of the confidence intervals is controlled by the conf.level parameter (default: 95%). Set conf.level=NA in order to suppress the confidence interval indicators.

In y-logarithmic plots, data points with $V(N) = 0$ or $V_m(N) = 0$ are drawn outside the plot region (below the bottom margin) rather than skipped.

Line and point styles can be defined globally with zipfR.par. They can be overridden locally with the optional parameters lty, lwd and col, but this should only be used when absolutely necessary. In most cases, it is more advisable to change the global settings temporarily for a sequence of plots.

The bw parameter is used to switch between B/W and color modes. It can also be set globally with zipfR.par.

See Also

vgc, lnre, lnre.vgc, plot.tfl, plot.spc, zipfR.par, zipfR.plotutils
Examples

```r
## load Our Mutual Friend spectrum and empirical vgc
data(DickensOurMutualFriend.emp.vgc)
data(DickensOurMutualFriend.spc)

## plot empirical V and V1 growth
plot(DickensOurMutualFriend.emp.vgc,add.m=1)

## use log scale for y-axis
plot(DickensOurMutualFriend.emp.vgc,add.m=1,log="y")

## binomially interpolated vgc at same points as
## empirical vgc
omf.bin.vgc <- vgc.interp(DickensOurMutualFriend.spc,N(DickensOurMutualFriend.emp.vgc))

## compare empirical and interpolated vgc, also with
## thinner lines, and in black and white
plot(DickensOurMutualFriend.emp.vgc,omf.bin.vgc,legend=c("observed","interpolated"))
plot(DickensOurMutualFriend.emp.vgc,omf.bin.vgc,legend=c("observed","interpolated"),lwd=c(1,1))
plot(DickensOurMutualFriend.emp.vgc,omf.bin.vgc,legend=c("observed","interpolated"),bw=TRUE)

## load Great Expectations spectrum and use it to
## compute ZM model
data(DickensGreatExpectations.spc)
ge.zm <- lnre("zm",DickensGreatExpectations.spc)

## expected V of Great Expectations at sample
## sizes of OMF's interpolated vgc
ge.zm.vgc <- lnre.vgc(ge.zm,N(omf.bin.vgc))

## compare interpolated OMF Vs and inter/extra-polated
## GE Vs, with a vertical line at sample size
## used to compute GE model
plot(omf.bin.vgc,ge.zm.vgc,N0=N(ge.zm),legend=c("OMF","GE"))

## load Italian ultra- prefix data and compute zm model
data(ItaUltra.spc)
ultra.zm <- lnre("zm",ItaUltra.spc)

## compute vgc up to about twice the sample size
## with variance of V
ultra.zm.vgc <- lnre.vgc(ultra.zm,(1:100)*70, variances=TRUE)

## plot with confidence intervals derived from variance in
## vgc (with larger datasets, ci will typically be almost
## invisible)
plot(ultra.zm.vgc)

## use more conservative confidence level, and plot
## the intervals as lines
```
plot(ultra.zm.vgc,conf.level=.99,conf.style="lines")

suppress ci plotting, and insert different title and labels
plot(ultra.zm.vgc,conf.level=NA,main="ultra-",xlab="sample sizes",ylab="types")

load Brown adjective spectrum
(about 80k tokens)
data(BrownAdj.spc)

binomially interpolated curve of V and V_1 to V_5
BrownAdj.bin.vgc <- vgc.interp(BrownAdj.spc,(1:100)*800,m.max=5)

plot with V and 5 spectrum elements
plot(BrownAdj.bin.vgc,add.m=c(1:5))

can pass list of VGCs in first argument with explicit call
plot.vgc(lapply(EvertLuedeling2001, vec2vgc),
 xlim=c(0, 30000), ylim=c(0, 1200),
 legend=names(EvertLuedeling2001))

print.lnre

Printing LNRE Models (zipfR)

Description

Implementations of the `print` and `summary` methods for LNRE models (subclasses of `lnre`).

Usage

```r
## S3 method for class 'lnre'
print(x, ...)

## S3 method for class 'lnre'
summary(object, ...)
```

Arguments

- `x, object` an object of class `lnre` or one of its subclasses, representing a LNRE model
- `...` other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases.

In the current implementation, `print` and `summary` produce the same output for LNRE models.

This summary comprises the type of LNRE model, its parameter values, derived parameters such as normalization constants, and the population size S.

If the model parameters have been estimated from an observed frequency spectrum, a comparison of the observed and expected frequency spectrum is shown, including goodness-of-fit statistics.

Value

NULL

Unlike other implementations of the `summary` method, `summary.lnre` only prints a summary on screen and does not return a special "summary" object.

See Also

See the `lnre` manpage for more information on LNRE models.

Examples

```r
# load Brown verbs dataset and estimate lnre models
data(BrownVer.spc)
zm <- lnre("zm", BrownVer.spc)
fzm <- lnre("fzm", BrownVer.spc, exact=FALSE)
gigp <- lnre("gigp", BrownVer.spc)

# look at summaries with either summary or print
summary(zm)
print(zm)

summary(fzm)
print(fzm)

summary(gigp)
print(gigp)
```

print.spc

Printing Frequency Spectra (zipfR)

Description

Implementations of the `print` and `summary` methods for frequency spectrum objects (of class `spc`).

Usage

```r
## S3 method for class 'spc'
print(x, all=FALSE, ...)

## S3 method for class 'spc'
summary(object, ...)
```
Arguments

- `x, object`: an object of class `spc`, representing a frequency spectrum
- `all`: if `FALSE`, only the first ten non-empty frequency classes will be shown (default)
- `...`: other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

`print.spc` works similar to the standard `print` method for data frames, but provides additional information about `N` and `V`. Unless `all` is set to `TRUE`, only the first ten non-zero spectrum elements will be shown.

`summary.spc` gives a concise summary of the most important information about the frequency spectrum. In addition to `N` `V`, the first spectrum elements are shown. The summary will also indicate whether the spectrum is incomplete, an expected spectrum, or has variances (but does not show the variances).

Value

`NULL`

Unlike other implementations of the `summary` method, `summary.spc` only prints a summary on screen and does not return a special “summary” object.

See Also

See the `spc` manpage for details on `spc` objects.

Examples

```r
## load Brown verbs dataset
data(BrownVer.spc)

## look at summary and print BrownVer.spc
summary(BrownVer.spc)
print(BrownVer.spc)

## print all non-zero spectrum elements
print(BrownVer.spc, all=TRUE)

## estimate zm model and construct expected spectrum with
## variances
zm <- lnre("zm", BrownVer.spc)
zm.spc <- lnre.spc(zm, N(zm), variances=TRUE)

## summary and print for the expected spectrum
summary(zm.spc)
print(zm.spc)
```
Description

Implementations of the `print` and `summary` methods for type frequency list objects (of class `tfl`).

Usage

```r
## S3 method for class 'tfl'
print(x, all=FALSE, ...)

## S3 method for class 'tfl'
summary(object, ...)
```

Arguments

- `x`, `object`: an object of class `tfl`, representing a type frequency list
- `all`: if `FALSE`, only the twenty most frequent types will be shown (default)
- `...`: other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

`print.tfl` works similar to the standard `print` method for data frames, but provides additional information about `N` and `V`. Unless `all` is set to `TRUE`, only the twenty most frequent types will be shown.

`summary.tfl` gives a concise summary of the most important information about the type frequency list. In addition to showing `N V`, the summary also indicates whether the list is incomplete and shows examples of type representations (if present).

Value

`NULL`

Unlike other implementations of the `summary` method, `summary.tfl` only prints a summary on screen and does not return a special "summary" object.

See Also

See the `tfl` manpage for details on `tfl` objects.
Examples

```r
## load Brown tfl
data(Brown.tfl)

## summary and print most frequent types
summary(Brown.tfl)
print(Brown.tfl)

## the whole type list (don't try this unless you have some time to spare)
## Not run:
print(Brown.tfl, all=TRUE)
## End(Not run)
```

print.vgc

Printing Vocabulary Growth Curves (zipfR)

Description

Implementations of the `print` and `summary` methods for vocabulary growth curve objects (of class `vgc`).

Usage

```r
## S3 method for class 'vgc'
print(x, all=FALSE, ...)

## S3 method for class 'vgc'
summary(object, ...)
```

Arguments

- `x, object`: an object of class `vgc`, representing a vocabulary growth curve
- `all`: if FALSE, vocabulary growth data are shown for at most 25 sample sizes (default)
- `...`: other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

`print.vgc` calls the standard `print` method for data frames internally, but reduces the data set randomly to show at most 25 sample sizes (unless `all=TRUE`).

`summary.vgc` gives a concise summary of the available vocabulary growth data in the `vgc` object, including the number and range of sample sizes, whether spectrum elements are included, and whether variances are included.
Value

NULL

Unlike other implementations of the summary method, summary.vgc only prints a summary on screen and does not return a special "summary" object.

See Also

See the vgc manpage for details on vgc objects.

Examples

```r
## load Brown "informative" prose empirical vgc
data(BrownInform.emp.vgc)

## summary, print (random subset) and print all
summary(BrownInform.emp.vgc)
print(BrownInform.emp.vgc)
print(BrownInform.emp.vgc, all=TRUE)

## load Brown informative prose spectrum
## and get estimate a fzm model
data(BrownInform.spc)
fzm <- lnre("fzm", BrownInform.spc, exact=FALSE)

## obtain expected vgc up to 2M tokens
## with spectrum elements up to V_3
## and variances
fzm.vgc <- lnre.vgc(fzm, (1:100)*2e+4, m.max=3, variances=TRUE)

## summary and print
summary(fzm.vgc)
print(fzm.vgc)
print(fzm.vgc, all=TRUE)
```

Description

Compute various measures of productivity and lexical richness from an observed frequency spectrum or type-frequency list, from an observed vocabulary growth curve, or from a vector of tokens.
productivity.measures

Usage

productivity.measures(obj, measures, data.frame=TRUE, ...)

S3 method for class 'tfl'
productivity.measures(obj, measures, data.frame=TRUE, ...)
S3 method for class 'spc'
productivity.measures(obj, measures, data.frame=TRUE, ...)
S3 method for class 'vgc'
productivity.measures(obj, measures, data.frame=TRUE, ...)

Default S3 method:
productivity.measures(obj, measures, data.frame=TRUE, ...)

Arguments

obj a suitable data object from which productivity measures can be computed. Currently either a frequency spectrum (of class spc), a type-frequency list (of class tfl), a vocabulary growth curve (of class vgc), or a token vector.

measures character vector naming the productivity measures to be computed (see "Productivity Measures" below). Names may be abbreviated as long as they remain unique. If unspecified, all supported measures are computed.

data.frame if TRUE, the return value is converted to a data frame for convenience in interactive use (default).

... additional arguments passed on to the method implementations (currently, no further arguments are recognized)

Details

This function computes productivity measures based on an observed frequency spectrum, type-frequency list or vocabulary growth curve. If an expected spectrum or VGC is passed, the expectations $E[V], E[V_m]$ will simply be substituted for the sample values V, V_m in the equations. In most cases, this does not yield the expected value of the productivity measure!

Some measures can only be computed from a complete frequency spectrum. They will return NA if obj is an incomplete spectrum or type-frequency list, an expected spectrum or a vocabulary growth curve is passed.

Some other measures can only be computed is a sufficient number of spectrum elements is included in a vocabulary growth curve (usually at least V_1 and V_2), and will return NA otherwise.

Such limitations are indicated in the list of measures below (unless spectrum elements V_1 and V_2 are sufficient).

Value

If obj is a frequency spectrum, type-frequency list or token vector: A numeric vector of the same length as measures with the corresponding observed values of the productivity measures. If data.frame=TRUE (the default), a single-row data frame is returned.
If obj is a vocabulary growth curve: A numeric matrix with columns corresponding to the selected productivity measures and rows corresponding to the sample sizes of the vocabulary growth curve. If data.frame=TRUE (the default), the matrix is converted to a data frame.

Productivity Measures

The following productivity measures are currently supported:

- **V**: the total number of types V
- **TTR**: the type-token ratio $TTR = V/N$
- **R**: Guiraud’s (1954) $R = V/\sqrt{N}$. An equivalent measure is Carroll’s (1964) $CTTR = R/\sqrt{2}$.
- **C**: Herdan’s (1964) $C = \frac{\log V}{\log N}$
- **k**: Dugast’s (1979) $k = \frac{\log V}{\log \log N}$
- **U**: Dugast’s (1978, 1979) $U = \frac{(\log N)^2}{\log N - \log V}$. Maas (1972) proposed an equivalent measure $a^2 = \frac{1}{U}$.
- **W**: Brunet’s (1978) $W = N^{V-a}$ with $a = 0.172$.
- **P**: Baayen’s (1991) productivity index $P = \frac{V}{N}$, which corresponds to the slope of the vocabulary growth curve (under random sampling assumptions)
- **Hapax**: the proportion of *hapax legomena* $\frac{V}{V}$ is a direct estimate for the parameter $\alpha = 1/a$ of a population following the Zipf-Mandelbrot law (Evert 2004b: 130).
- **H**: Honoré’s (1979) $H = 100 \frac{\log N}{1 - \frac{V}{N}}$, a transformation of the proportion of *hapax legomena* adjusted for sample size
- **S**: Sichel’s (1975) $S = \frac{V}{V_1}$, i.e. the proportion of *dis legomena*. Michéa’s (1969, 1971) $M = \frac{1}{S}$ is an equivalent measure.
- **alpha2**: Evert’s $\alpha_2 = 1 - 2\frac{V}{V_1}$ is another direct estimate for the parameter $\alpha = 1/a$ of a Zipf-Mandelbrot population (Evert 2004b: 127).
- **K**: Yule’s (1944) $K = 10^{4} \cdot \sum_{m} \frac{m^2 V_m - N}{N^2}$ (only for complete frequency spectrum or type-frequency list). Herdan (1955) proposes an almost equivalent measure $v_m \approx \sqrt{K}$ based on a different derivation. Both measures converge for large N and V. Yule’s K is almost identical to Simpson’s D and is an unbiased estimator for the same population coefficient δ under an independent Poisson sampling scheme. A measure of *lexical poverty*, i.e. smaller values correspond to higher productivity.
- **D**: Simpson’s (1949) $D = \sum_{m} \frac{V_m m}{N^2} \cdot \frac{m-1}{N-1}$ (only for complete frequency spectrum or type-frequency list) is a slightly modified version of Yule’s K. This measure is an unbiased estimator for a population coefficient δ, representing the probability of picking the same type twice in two consecutive draws from the population. A measure of *lexical poverty*, i.e. smaller values correspond to higher productivity.
- **Entropy**: Entropy of the sample frequency distribution $- \sum_{m} V_m \frac{m}{N} \log_2 \frac{m}{N}$ (only for complete frequency spectrum or type-frequency list). This is not a reliable estimator of population entropy. It is therefore not recommended as a productivity measure and has only been included for evaluation studies. A measure of *lexical poverty*, i.e. smaller values correspond to higher productivity.
eta: Normalised entropy or evenness $\eta = \frac{\text{Entropy}}{\log_2 V}$

(only for complete frequency spectrum or type-frequency list) where $\log_2 V$ is the largest possible value for a sample with the observed vocabulary size (obtained for a uniform distribution). Therefore, $0 \leq \eta \leq 1$. Not recommended as a productivity measure because it is expected to produce erratic and counterintuitive results.

See Sec. 2.1 of the technical report Inside *zipfR* for further details and references.

References

See Also

`lnre.productivity.measures` for parametric bootstrapping and approximate expectations of productivity measures in random samples from a LNRE population.

Examples

```r
rbind(
  AllTexts=productivity.measures(Brown.spc),
  Fiction=productivity.measures(BrownImag.spc),
  NonFiction=productivity.measures(BrownInform.spc))

# can be applied to token vector, type-frequency list, or frequency spectrum
bar.vec <- EvertLuedeling2001$bar
bar1 <- productivity.measures(bar.vec)  # token vector
bar2 <- productivity.measures(vec2tfl(bar.vec))  # type-frequency list
bar3 <- productivity.measures(vec2spc(bar.vec))  # frequency spectrum
print(rbind(tokens=bar1, tfl=bar2, spc=bar3))

# sample-size dependency of productivity measures in Brown corpus
# (note that only a subset of the measures can be computed)

n <- c(1e3, 5e3, 10e3, 20e3, 50e3, 1e6)
idx <- N(Brown.emp.vgc) %in% n
my.vgc <- vgc(N=N(Brown.emp.vgc)[idx],
              V=V(Brown.emp.vgc)[idx],
              Vm=list(Vm(Brown.emp.vgc, 1)[idx]))
print(my.vgc)  # since we don't have a subset method for VGCs yet
productivity.measures(my.vgc)

productivity.measures(my.vgc, measures=c("TTR", "P"))  # selected measures

# parametric bootstrapping to obtain sampling distribution of measures
# (much easier with ?lnre.productivity.measures)
model <- lnre("zm", spc=ItaRi.spc)  # realistic LNRE model
res <- lnre.bootstrap(model, 1e6, ESTIMATOR=identity, STATISTIC=productivity.measures)
bootstrap.confint(res, method="normal")
```
read.multiple.objects constructs a list of spc, vgc or tfl objects from a set of input text files in the specified directory

NB: This function is intended for users that want to run advanced experiments (e.g., handling hundreds of spectra generated in multiple randomizations experiments). For the standard one-object-at-a-time reading functionality, look at the documentation of read.spc, read.vgc and read.tfl

Usage

```r
read.multiple.objects(directory, prefix, class=c("spc", "vgc", "tfl"))
```

Arguments

- `directory` character string specifying the directory where the target input files reside (absolute path, or path relative to current working directory)
- `prefix` character string specifying prefix that must be shared by all target input file names
- `class` one of spc, vgc or tfl as character string, specifying the class of object we are importing (see the manpages of spc, vgc and tfl for details)

Format

read.multiple.objects reads in all files matching the pattern `prefix.id.class` from the specified directory, where the prefix and class strings are passed as arguments, and id is an arbitrary string that is used as index of the corresponding object in the output list. read.multiple.objects calls the read function corresponding to the class argument. Thus, the input files must respect the formatting conventions of the relevant reading functions (see documentation of read.spc, read.vgc and read.tfl)

Value

read.multiple.objects returns a list of objects of the specified class; each object is indexed with the id extracted from the corresponding file name (see section "Format")

See Also

See the spc, vgc and tfl manpages for details on the corresponding objects; read.spc, read.vgc and read.tfl for the single-file reading functions and input format details
Examples

Not run:
These are just illustrative examples. Users should fill in their
own files instead of the dummy names used here.

suppose that the current working directory contains
100 spc files named: rand.1.spc, rand.2.spc, ...,
rand.100.spc

read the files in:
spc.list <- read.multiple.objects(".","rand","spc")

you can access each spc using the id extracted from
the file name, e.g.:
summary(spc.list[["1"]])

more usefully, you might want to iterate over the
whole list, e.g., to calculate mean V:
mean(sapply(spc.list,V))

notice that ids are arbitrary strings
e.g., suppose that directory /home/me/animals
contains sounds.dog.vgc and sounds.elephant.vgc

we read the vgcs in:
vgc.list <- read.multiple.objects("/home/me/animals","sounds","vgc")

accessing the elephant vgc:
V(vgc.list[["elephant"]])

of course, tfl-reading works in the same way (assuming
that the animals directory also contains some tfl files):
tfl.list <- read.multiple.objects("/home/me/animals","sounds","tfl")

End(Not run)

read.spc

Loading and Saving Frequency Spectra (zipfR)

Description

read.spc loads frequency spectrum from .spc file
write.spc saves frequency spectrum object in .spc file

Usage

read.spc(file)
write.spc(spc, file)

Arguments

file character string specifying the pathname of a disk file. Files with extension .gz will automatically be compressed/decompressed. See section "Format" for a description of the required file format

spc a frequency spectrum, i.e. \ an object of class spc

Format

A TAB-delimited text file with column headers but no row names (suitable for reading with read.delim). The file must contain at least the following two columns:

<table>
<thead>
<tr>
<th>m</th>
<th>frequency class m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vm</td>
<td>number (V_m) of types in frequency class (m) (or expected class size (E[V_m]))</td>
</tr>
</tbody>
</table>

An optional column labelled \(VVm \) can be used to specify variances of expected class sizes (for a frequency spectrum derived from a LNRE model or by binomial interpolation). These columns may appear in any order in the text file. All other columns will be silently ignored.

Details

If the filename file ends in the extension .gz, .bz2 or .xz, the disk file will automatically be decompressed (read.spc) or compressed (write.spc).

The .spc file format does not store the values of \(N, V \) and \(VV \) explicitly. Therefore, incomplete frequency spectra and expected spectra with variances cannot be fully reconstructed from disk files. Saving such frequency spectra (or loading a spectrum with variance data) will trigger corresponding warnings.

Value

read.spc returns an object of class spc (see the spc manpage for details)

See Also

See the spc manpage for details on spc objects. See read.tfl and read.vgc for import/export of other data structures.

Examples

```r
## save Italian ultra- frequency spectru to external text file
fname <- tempfile(fileext=".spc")
write.spc(ItaUltra.spc, fname)
## now <fname> is a TAB-delimited text file with columns m and Vm

## we ready it back in
New.spc <- read.spc(fname)
```
same spectrum as ItaUltra.spc, compare:

```r
summary(New.spc)
summary(ItaUltra.spc)
```

```r
stopifnot(isTRUE(all.equal(New.spc, ItaUltra.spc)))  # should be identical
```

Not run:

```r
## DON'T do the following, incomplete spectrum will not be restored properly!!!
zm <- lnre("zm", ItaUltra.spc)  # estimate model
zm.spc <- lnre.spc(zm,N(zm))    # incomplete spectrum from model
write.spc(zm.spc, fname)       # WARNINGS
bad.spc <- read.spc(fname)     # but this function cannot know something is wrong

summary(zm.spc)
summary(bad.spc)  # note that N and V are completely wrong!!!
```

End(Not run)

read.tfl

Loading and Saving Type Frequency Lists (zipfR)

Description

`read.tfl` loads type frequency list from .tfl file

`write.tfl` saves type frequency list object in .tfl file

Usage

```r
read.tfl(file, encoding=getOption("encoding"))
write.tfl(tfl, file, encoding=getOption("encoding"))
```

Arguments

- **file**: character string specifying the pathname of a disk file. Files with extension .gz will automatically be compressed/decompressed. See section "Format" for a description of the required file format
- **tfl**: a type frequency list, i.e. an object of class tfl
- **encoding**: specifies the character encoding of the disk file to be read or written to. See `file` for details.

Format

A TAB-delimited text file with column headers but no row names (suitable for reading with `read.delim`), containing the following columns:
Details

If the filename `file` ends in the extension `.gz`, `.bz2`, `.xz`, the disk file will automatically be decompressed (`read.tfl`) and compressed (`write.tfl`).

The `.tfl` file format stores neither the values of N and V nor the range of type frequencies explicitly. Therefore, incomplete type frequency lists cannot be fully reconstructed from disk files (and will not even be recognized as such). An attempt to save such a list will trigger a corresponding warning.

Value

`read.tfl` returns an object of class `tfl` (see the `tfl` manpage for details).

See Also

See the `tfl` manpage for details on `tfl` objects. See `read.spc` and `read.vgc` for import/export of other data structures.

Examples

```r
## save type-frequency list for Brown corpus to external file
fname <- tempfile(fileext = "tfl.gz") # automatically compresses file
write.tfl(Brown.tfl, fname)
## file <fname> contains a compressed TAB-delimited table with fields
## k ... type ID (usually Zipf rank)
## f ... frequency of type
## type ... the type itself (here a word form)

## read it back in
New.tfl <- read.tfl(fname)

## same as Brown.tfl
summary(New.tfl)
summary(Brown.tfl)
print(New.tfl)
print(Brown.tfl)
head(New.tfl)
head(Brown.tfl)
stopifnot(isTRUE(all.equal(New.tfl, Brown.tfl))) # should by identical
```

Not run:
suppose you have a text file with a frequency list, one f per line, e.g.:
f
14
read.vgc

Description

`read.vgc` loads vocabulary growth data from `.vgc` file

`write.vgc` saves vocabulary growth data in `.vgc` file

Usage

```r
read.vgc(file)

write.vgc(vgc, file)
```

Arguments

- **file** character string specifying the pathname of a disk file. Files with extension `.gz` will automatically be compressed/decompressed. See section "Format" for a description of the required file format
- **vgc** a vocabulary growth curve, i.e. an object of class `vgc`

Format

A TAB-delimited text file with column headers but no row names (suitable for reading with `read.delim`). The file must contain at least the following two columns:

- **N** increasing integer vector of sample sizes \(N \)
- **V** corresponding observed vocabulary sizes \(V(N) \) or expected vocabulary sizes \(E[V(N)] \)
Optionally, columns V1, ..., V9 can be added to specify the number of hapaxes (V1(N)), dis legomena (V2(N)), and further spectrum elements up to V9(N).

It is not necessary to include all 9 columns, but for any Vm(N) in the data set, all "lower" spectrum elements Vm'(N) (for m' < m) must also be present. For example, it is valid to have columns V1 V2 V3, but not V1 V3 V5 or V2 V3 V4.

Variances for expected vocabulary sizes and spectrum elements can be given in further columns VV (for Var[V(N)]), and VV1, ..., VV9 (for Var[Vm(N)]). VV is mandatory in this case, and columns VVm must be specified for exactly the same frequency classes m as the Vm above.

These columns may appear in any order in the text file. All other columns will be silently ignored.

Details

If the filename file ends in the extension .gz, .bz2 or .xz, the disk file will automatically be decompressed (read.vgc) or compressed (write.vgc).

Value

read.vgc returns an object of class vgc (see the vgc manpage for details)

See Also

See the vgc manpage for details on vgc objects. See read.tfl and read.spc for import/export of other data structures.

Examples

```r
## save Italian ultra- prefix VGC to external text file
fname <- tempfile(fileext=".vgc")
write.vgc(itaUltra.emp.vgc, fname)
## now <fname> is a TAB-delimited text file with columns N, V and V1

## we ready it back in
New.vgc <- read.vgc(fname)

## same vgc as ItaUltra.emp.vgc, compare:
summary(New.vgc)
summary(itaUltra.emp.vgc)
head(New.vgc)
head(itaUltra.emp.vgc)

stopifnot(isTRUE(all.equal(New.vgc, ItaUltra.emp.vgc))) # should be identical
```
Sample: Incremental Samples from a Frequency Spectrum (zipfR)

Description
Compute incremental random samples from a frequency spectrum (an object of class `spc`).

Usage
```r
sample.spc(obj, N, force.list=FALSE)
```

Arguments
- `obj`: an object of class `spc`, representing a frequency spectrum
- `N`: a vector of non-negative integers in increasing order, the sample sizes for which incremental samples will be generated
- `force.list`: if `TRUE`, the return value will always be a list of `spc` objects, even if `N` is just a single integer

Details
This function is currently implemented as a wrapper around `sample.tfl`, using `spc2tfl` and `tfl2spc` to convert between frequency spectra and type frequency lists. A direct implementation might be slightly more efficient, but would very likely not make a substantial difference.

Value
If `N` is a single integer (and the `force.list` flag is not set), a `spc` object representing the frequency spectrum of a random sample of size `N` from `obj`.

If `N` is a vector of length greater one, or if `force.list=TRUE`, a list of `spc` objects representing the frequency spectra of incremental random samples of the specified sizes `N`. Incremental means that each sample is a superset of the preceding sample.

See Also
- `spc` for more information about frequency spectra
- `sample.tfl` is an analogous function for type frequency lists (objects of class `tfl`)
- `sample.spc` takes a single concrete random subsample from a spectrum and returns the spectrum of the subsample, unlike `spc.interp`, that computes the expected frequency spectrum for random subsamples of size `N` by binomial interpolation.
Examples

```r
## read Brown spectrum
data(Brown.spc)
summary(Brown.spc)

## sample a spectrum of 100k tokens
MiniBrown.spc <- sample.spc(Brown.spc,1e+5)
summary(MiniBrown.spc)

## if we repeat, we get a different sample
MiniBrown.spc <- sample.spc(Brown.spc,1e+5)
summary(MiniBrown.spc)
```

sample.tfl
Incremental Samples from a Type Frequency List (zipfR)

Description

Compute incremental random samples from a type frequency list (an object of class tfl).

Usage

```r
sample.tfl(obj, N, force.list=FALSE)
```

Arguments

- `obj`
an object of class tfl, representing a type frequency list
- `N`
a vector of non-negative integers in increasing order, the sample sizes for which incremental samples will be generated
- `force.list`
if TRUE, the return value will always be a list of tfl objects, even if N is just a single integer

Details

The current implementation is reasonably efficient, but will be rather slow when applied to very large type frequency lists.

Value

If `N` is a single integer (and the `force.list` flag is not set), a tfl object representing a random sample of size `N` from the type frequency list `obj`.

If `N` is a vector of length greater one, or if `force.list=TRUE`, a list of tfl objects representing incremental random samples of the specified sizes `N`. *Incremental* means that each sample is a superset of the preceding sample.
See Also

tfl for more information about type frequency lists
sample.spc is an analogous function for frequency spectra (objects of class spc)

Examples

load Brown tfl
data(Brown.tfl)
summary(Brown.tfl)

sample a tfl of 100k tokens
MiniBrown.tfl <- sample.tfl(Brown.tfl,1e+5)
summary(MiniBrown.tfl)

if we repeat, we get a different sample
MiniBrown.tfl <- sample.tfl(Brown.tfl,1e+5)
summary(MiniBrown.tfl)

spc

Frequency Spectra (zipfR)

Description

In the zipfR library, spc objects are used to represent a word frequency spectrum (either an observed spectrum or the expected spectrum of a LNRE model at a given sample size).

With the spc constructor function, an object can be initialized directly from the specified data vectors. It is more common to read an observed spectrum from a disk file with read.spc or compute an expected spectrum with lnre.spc, though.

spc objects should always be treated as read-only.

Usage

spc(Vm, m=1:length(Vm), VVm=NULL, N=NA, V=NA, VV=NA, m.max=0, expected=!missing(VVm))

Arguments

m integer vector of frequency classes \(m \) (if omitted, \(Vm \) is assumed to list the first \(k \) frequency classes \(V_1, \ldots, V_k \))

Vm vector of corresponding class sizes \(V_m \) (may be fractional for expected frequency spectrum \(E[V_m] \))

VVm optional vector of estimated variances \(\text{Var}[V_m] \) (for expected frequency spectrum only)
total sample size N and vocabulary size V of frequency spectrum. While these values are usually determined automatically from m and V_m, they are required for an incomplete frequency spectrum that does not list all non-empty frequency classes.

variance $Var[V]$ of expected vocabulary size. If VVm is specified, VV should also be given.

highest frequency class m listed in incomplete spectrum. If $m.max$ is set, N and V also have to be specified, and all non-zero frequency classes up to $m.max$ have to be included in the input vectors. Frequency classes above $m.max$ in the input will automatically be deleted.

set to TRUE if the frequency spectrum represents expected values $E[V_m]$ of the class sizes according to some LNRE model (this is automatically triggered when the VVm argument is specified).

Details

A spc object is a data frame with the following variables:

- m frequency class m, an integer vector
- V_m class size, i.e. number V_m of types in frequency class m (either observed class size from a sample or expected class size $E[V_m]$ based on a LNRE model)
- VVm optional: estimated variance $V[Var[V]]$ of expected class size (only meaningful for expected spectrum derived from LNRE model)

The following attributes are used to store additional information about the frequency spectrum:

- $m.max$ if non-zero, the frequency spectrum is incomplete and lists only frequency classes up to $m.max$
- N, V sample size N and vocabulary size V of the frequency spectrum. For a complete frequency spectrum, these values could easily be determined from m and V_m, but they are essential for an incomplete spectrum.
- VV variance of expected vocabulary size; only present if hasVariances is TRUE. Note that VV may have the value NA if the user failed to specify it.
- expected if TRUE, frequency spectrum lists expected class sizes $E[V_m]$ (rather than observed sizes V_m). Note that the V_m variable is only allowed for an expected frequency spectrum.
- hasVariances indicates whether or not the VVm variable is present

Value

An object of class spc representing the specified frequency spectrum. This object should be treated as read-only (although such behaviour cannot be enforced in R).

See Also

read.spc, write.spc, spc.vector, sample.spc, spc2tfl, tfl2spc, lnre.spc, plot.spc

Generic methods supported by spc objects are print, summary, N, V, Vm, VV, and VVm.

Implementation details and non-standard arguments for these methods can be found on the manpages print.spc, summary.spc, N.spc, V.spc, etc.
Examples

```r
## load Brown imaginative prose spectrum and inspect it
data(BrownImag.spc)

summary(BrownImag.spc)
print(BrownImag.spc)

plot(BrownImag.spc)

N(BrownImag.spc)
V(BrownImag.spc)
Vm(BrownImag.spc,1)
Vm(BrownImag.spc,1:5)

## compute ZM model, and generate PARTIAL expected spectrum
## with variances for a sample of 10 million tokens
zm <- lnre("zm",BrownImag.spc)
zm.spc <- lnre.spc(zm,1e+7,variances=TRUE)

## inspect extrapolated spectrum
summary(zm.spc)
print(zm.spc)

plot(zm.spc,log="x")

N(zm.spc)
V(zm.spc)
VV(zm.spc)
Vm(zm.spc,1)
VVm(zm.spc,1)

## generate an artificial Zipfian-looking spectrum
## and take a look at it
zipf.spc <- spc(round(1000/(1:1000)^2))

summary(zipf.spc)
plot(zipf.spc)

## see manpages of lnre, and the various *.spc mapages
## for more examples of spc usage
```

spc.interp

Expected Frequency Spectrum by Binomial Interpolation (zipfR)

Description

spc.interp computes the expected frequency spectrum for a random sample of specified size \(N \), taken from a data set described by the frequency spectrum object \(\text{obj} \).
Usage

```
spc.interp(obj, N, m.max=max(obj$m), allow.extrapolation=FALSE)
```

Arguments

- `obj` an object of class `spc`, representing the frequency spectrum of the data set from which samples are taken
- `N` a single non-negative integer specifying the sample size for which the expected frequency spectrum is calculated
- `m.max` number of spectrum elements listed in the expected frequency spectrum. By default, as many spectrum elements are included as the spectrum `obj` contains, since the expectations of higher spectrum elements will always be 0 in the binomial interpolation. See note in section "Details" below.
- `allow.extrapolation` if `TRUE`, the requested sample size `N` may be larger than the sample size of the frequency spectrum `obj`, for binomial extrapolation. This option should be used with great caution (see `EVm.spc` for details).

Details

See the `EVm.spc` manpage for more information, especially concerning binomial extrapolation.

For large frequency spectra, the default value of `m.max` may lead to very long computation times. It is therefore recommended to specify `m.max` explicitly and calculate only as many spectrum elements as are actually required.

Value

An object of class `spc`, representing the expected frequency spectrum for a random sample of size `N` taken from the data set that is described by `obj`.

See Also

- `spc` for more information about frequency spectra and links to relevant functions

The implementation of `spc.interp` is based on the functions `EV.spc` and `EVm.spc`. See the respective manpages for technical details.

- `vgc.interp` computes expected vocabulary growth curves by binomial interpolation from a frequency spectrum

- `sample.spc` takes a single concrete random subsample from a spectrum and returns the spectrum of the subsample, unlike `spc.interp`, that computes the expected frequency spectrum for random subsamples of size `N` by binomial interpolation.
Examples

```r
## load the Tiger NP expansion spectrum
## (sample size: about 109k tokens)
data(TigerNP.spc)

## interpolated expected frequency subspectrum of 50k tokens
TigerNP.sub.spc <- spc.interp(TigerNP.spc, 5e+4)
summary(TigerNP.sub.spc)

## previous is slow since it calculates all expected spectrum
## elements; suppose we only need the first 10 expected
## spectrum element frequencies; then we can do:
TigerNP.sub.spc <- spc.interp(TigerNP.spc, 5e+4, m.max=10)  # much faster!
summary(TigerNP.sub.spc)
```

spc.vector

Create Vector of Spectrum Elements (zipfR)

Description

spc.vector returns a selected range of elements from a frequency spectrum as a plain numeric vector (which may contain entries with $V_m = 0$, unlike the spc object itself).

Usage

```r
spc.vector(obj, m.min=1, m.max=15, all=FALSE)
```

Arguments

- `obj`: an object of class spc, representing an observed or expected frequency spectrum
- `m.min, m.max`: determine the range of frequency classes to be returned (defaulting to 1 \ldots 15)
- `all`: if TRUE, a vector containing the entire frequency spectrum is returned, i.e. `m.max` is set to `max(obj$m)`. Note that the value of `m.min` can still be overridden manually to return only part of the spectrum.

Details

spc.vector(obj, a, b) is fully equivalent to `Vm(obj, a:b)` (and is implemented in this way).

Value

A numeric vector with the selected elements of the frequency spectrum. In this vector, empty frequency classes ($V_m = 0$) are represented by 0 entries (unlike the spc object, which omits all empty classes).
spc2tfl

See Also

spc for more information about spc objects and links to relevant functions
Vm.spc for an alternative way of extracting spectrum vectors from a .spc object, and N.spc, V.spc,
VV.spc, VVm.spc for extracting related information

Examples

```r
## Brown Noun spectrum
data(BrownNoun.spc)

## by default, extract first 15 elements
spc.vector(BrownNoun.spc)

## first five elements
spc.vector(BrownNoun.spc,1:5)

## just frequencies of spc elements 4 and 5
spc.vector(BrownNoun.spc,4:5)
## same as
Vm(BrownNoun.spc,4:5)
```

Description

tfl2spc computes an observed frequency spectrum from a type frequency list, while spc2tfl reconstructs the type frequency list underlying a frequency spectrum (but without type representations).

Usage

```r
tfl2spc(tfl)
spc2tfl(spc)
```

Arguments

tfl an object of class tfl, representing a type frequency list
spc an object of class spc, representing a frequency spectrum
Details

The current implementation of these functions does not support incomplete type frequency lists and
frequency spectra.

spc2tfl can only convert frequency spectra where all class sizes are integers. For this reason, expected
frequency spectra (including all spectra with variance data) are not supported.

Value

For tf12spc, an object of class spc representing the frequency spectrum corresponding to the type
frequency list tf1.

For spc2tfl, an object of class tfl representing type frequency list underlying the observed fre-
quency spectrum tf1.

See Also

spc for more information about spc objects and links to relevant functions; tf1 for more information
about tf1 objects and links to relevant functions

Examples

```r
## Brown tfl and spc
data(Brown.tfl)
data(Brown.spc)

## a spectrum from a tfl
Brown.spc2 <- tf12spc(Brown.tfl)

## identical to Brown.spc:
summary(Brown.spc)
summary(Brown.spc2)
tail(Brown.spc)
tail(Brown.spc2)

## a tfl from a spectrum
Brown.tfl2 <- spc2tfl(Brown.spc)

## same frequency information as Brown.tfl
## but with different ids and no type labels
summary(Brown.tfl)
summary(Brown.tfl2)
print(Brown.tfl2)
print(Brown.tfl)
```
Description

In the zipfR library, tfl objects are used to represent a type frequency list, which specifies the observed frequency of each type in a corpus. For mathematical reasons, expected type frequencies are rarely considered.

With the tfl constructor function, an object can be initialized directly from the specified data vectors. It is more common to read a type frequency list from a disk file with read.tfl or, in some cases, derive it from an observed frequency spectrum with spc2tfl.

tfl objects should always be treated as read-only.

Usage

```r
 tfl(f, k=seq_along(f), type=NULL, f.min=min(f), f.max=max(f),
       incomplete=!isTRUE(missing(f.min) &amp; missing(f.max)), N=NA, V=NA,
       delete.zeros=FALSE)
```

Arguments

- `k` integer vector of type IDs \(k \) (if omitted, natural numbers \(1, 2, \ldots \) are assigned automatically)
- `f` vector of corresponding type frequencies \(f_k \)
- `type` optional character vector of type representations (e.g. word forms or lemmata), used for informational and printing purposes only
- `incomplete` indicates that the type frequency list is incomplete, i.e. only contains types in a certain frequency range (typically, the lowest-frequency types may be excluded). Incomplete type frequency lists are rarely useful.
- `N, V` sample size and vocabulary size corresponding to the type frequency list have to be specified explicitly for incomplete lists
- `f.min, f.max` frequency range represented in an incomplete type frequency list (see details below)
- `delete.zeros` if TRUE, delete types with \(f = 0 \) from the type frequency list, after assigning type IDs. This operation does not make the resulting tfl object incomplete.

Details

If \(f \text{.min} \) and \(f \text{.max} \) are not specified, but the list is marked as incomplete (with `incomplete=TRUE`), they are automatically determined from the frequency vector \(f \) (making the assumption that all types in this frequency range are listed). Explicit specification of either \(f \text{.min} \) or \(f \text{.max} \) implies an incomplete list. In this case, all types outside the specified range will be deleted from the list.
If `incomplete=FALSE` is explicitly given, \(N \) and \(V \) will be determined automatically from the input data (which is assumed to be complete), but the resulting type frequency list will still be incomplete. If you just want to remove types with \(f = 0 \) without marking the type frequency list as incomplete, use the option `delete.zeros=TRUE`.

A `tfl` object is a data frame with the following variables:

- \(k \): integer type ID
- \(f \): corresponding type frequency \(f_k \)
- type: optional: character vector with type representations used for printing

The data frame always has to be sorted with respect to the \(k \) column (ascending order). If a type column is present, rownames are set to the types and can be used for character indexing.

The following attributes are used to store additional information about the frequency spectrum:

- \(N \), \(V \): sample size \(N \) and vocabulary size \(V \) corresponding to the type frequency list. For a complete list, these values could easily be determined from the \(f \) variable, but they are essential for an incomplete list.
- incomplete: if `TRUE`, the type frequency list is incomplete, i.e. it lists only types in the frequency range given by \(f.min \) and \(f.max \)
- \(f.min \), \(f.max \): range of type frequencies represented in the list (should be ignored unless the `incomplete` flag is set)
- hasTypes: indicates whether or not the type variable is present

Value

An object of class `tfl` representing the specified type frequency list. This object should be treated as read-only (although such behaviour cannot be enforced in R).

See Also

`read.tfl`, `write.tfl`, `plot.tfl`, `sample.tfl`, `spc2tfl`, `tfl2spc`

Generic methods supported by `tfl` objects are `print`, `summary`, `N`, `V` and `Vm`.

Implementation details and non-standard arguments for these methods can be found on the man-pages `print.tfl`, `summary.tfl`, `N.tfl`, `V.tfl`, etc.

Examples

```r
## typically, you will read a tfl from a file
## (see examples in the read.tfl manpage)

## or you can load a ready-made tfl
data(Brown.tfl)
summary(Brown.tfl)
print(Brown.tfl)

## or create it from a spectrum (with different ids and
```
no type labels)
data(Brown.spc)

Brown.tfl2 <- spc2tfl(Brown.spc)

same frequency information as Brown.tfl
but with different ids and no type labels
summary(Brown.tfl2)
print(Brown.tfl2)

how to display draw a Zipf’s rank/frequency plot
by extracting frequencies from a tfl
plot(sort(Brown.tfl$f, decreasing=TRUE), log="y", xlab="rank", ylab="frequency")

simulating a tfl
Zipfian.tfl <- tf1(1000/(1:1000))
plot(Zipfian.tfl$f, log="y")

Tiger | Tiger NP and PP expansions (zipfR)

Description

Objects of classes tfl, spc and vgc that contain frequency data for the syntactic expansions of Noun Phrases (NP) and Prepositional Phrases (PP) in the Tiger German treebank.

Usage

TigerNP.tfl
TigerNP.spc
TigerNP.emp.vgc

TigerPP.tfl
TigerPP.spc
TigerPP.emp.vgc

Details

In this dataset, types are not words, but syntactic expansions, i.e., sequences of syntactic categories that form NPs (in TigerNP) or PPs (in TigerPP), according to the Tiger annotation scheme for German. Thus, for example, among the expansion types in the TigerNP dataset, we find ART_NN and ART_ADJA_NN, whereas among the PP expansions in TigerPP we find APPR_ART_NN and APPR_NN (APPR is the tag for prepositions in the Tiger tagset).

The Tiger treebank contains about 900,000 tokens (50,000 sentences) of German newspaper text from the Frankfurter Rundschau. The token frequencies of the expansion types are taken from this corpus.
TigerNP.tfl and TigerPP.tfl are the type frequency lists. TigerNP.spc and TigerPP.spc are frequency spectra. TigerNP.emp.vgc and TigerPP.emp.vgc are the corresponding observed vocabulary growth curves (tracking the development of V and $V(1)$ in the original order of occurrence of the expansion tokens in the source corpus).

References

Tiger Project: https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger/

Examples

TigerNP.tfl
summary(TigerNP.spc)
summary(TigerNP.emp.vgc)

TigerPP.tfl
summary(TigerPP.spc)
summary(TigerPP.emp.vgc)

vec2xxx Type-Token Statistics for Samples and Empirical Data (zipfR)

Description

Compute type-frequency list, frequency spectrum and vocabulary growth curve from a token vector representing a random sample or an observed sequence of tokens.

Usage

vec2tfl(x)
vec2spc(x)
vec2vgc(x, steps=200, stepsize=NA, m.max=0)

Arguments

x a vector of length N_0, representing a random sample or other observed data set of N_0 tokens. For each token, the corresponding element of x specifies the type that the token belongs to. Usually, x is a character vector, but it might also specify integer IDs in some cases.

steps number of steps for which vocabulary growth data $V(N)$ is calculated. The values of N will be evenly spaced (up to rounding differences) from $N = 1$ to $N = N_0$.
alternative way of specifying the steps of the vocabulary growth curve. In this case, vocabulary growth data will be calculated every \texttt{stepsize} tokens. The first step is chosen such that the last step corresponds to the full sample ($N = N_0$). Only one of the parameters \texttt{steps} and \texttt{stepsize} may be specified.

\begin{itemize}
\item \texttt{m.max} --- an integer in the range $1 \ldots 9$, specifying how many spectrum elements $V_m(N)$ to include in the vocabulary growth curve. By default only vocabulary size $V(N)$ is calculated, i.e. $\texttt{m.max}=0$.
\end{itemize}

\section*{Details}

There are two main applications for the \texttt{vec2xxx} functions:

\begin{itemize}
\item \textbf{a)} They can be used to calculate type-token statistics and vocabulary growth curves for random samples generated from a LNRE model (with the \texttt{rlnre} function).
\item \textbf{b)} They provide an easy way to process a user’s own data without having to rely on external scripts to compute frequency spectra and vocabulary growth curves. All that is needed is a text file in one-token-per-line format (i.e. where each token is given on a separate line). See "Examples" below for further hints.
\end{itemize}

Both applications work well for samples of up to approx. 1 million tokens. For considerably larger data sets, specialized external software should be used, such as the Perl scripts provided on the \texttt{zipfR} homepage.

\section*{Value}

An object of class \texttt{tfl}, \texttt{spc} or \texttt{vgc}, representing the type frequency list, frequency spectrum or vocabulary growth curve of the token vector \texttt{x}, respectively.

\section*{See Also}

\begin{itemize}
\item \texttt{tfl}, \texttt{spc} and \texttt{vgc} for more information about type frequency lists, frequency spectra and vocabulary growth curves
\item \texttt{rlnre} for generating random samples (in the form of the required token vectors) from a LNRE model
\item \texttt{readLines} and \texttt{scan} for loading token vectors from disk files
\end{itemize}

\section*{Examples}

\begin{verbatim}
type-token statistics for random samples from a LNRE distribution

model <- lnre("fzm", alpha=.5, A=1e-6, B=.05)
x <- rlnre(model, 100000)
vec2tfl(x)
vec2spc(x) # same as tfl2spc(vec2tfl(x))
vec2vgc(x)
sample.spc <- vec2spc(x)
\end{verbatim}
exp.spc <- lnre.spc(model, 100000)
plot(exp.spc, sample.spc)

sample.vgc <- vec2vgc(x, m.max=1, steps=500)
exp.vgc <- lnre.vgc(model, N=N(sample.vgc), m.max=1)
plot(exp.vgc, sample.vgc, add.m=1)

Not run:
load token vector from a file in one-token-per-line format
x <- readLines(filename)
x <- readLines(file.choose()) # with file selection dialog

you can also perform whitespace tokenization and filter the data
brown <- scan("brown.pos", what=character(0), quote="")
nouns <- grep("/NNS?$", brown, value=TRUE)
plot(vec2spc(nouns))
plot(vec2vgc(nouns, m.max=1), add.m=1)

End(Not run)

vgc

Vocabulary Growth Curves (zipfR)

Description

In the zipfR library, vgc objects are used to represent a vocabulary growth curve (VGC). This can be an observed VGC from an incremental set of sample (such as a corpus), a randomized VGC obtained by binomial interpolation, or the expected VGC according to a LNRE model.

With the vgc constructor function, an object can be initialized directly from the specified data vectors. It is more common to read an observed VGC from a disk file with read.vgc, generate a randomized VGC with vgc.interp or compute an expected VGC with lnre.vgc, though.

vgc objects should always be treated as read-only.

Usage

```r
vgc(N, V, Vm=NULL, VV=NULL, VVm=NULL, expected=FALSE, check=TRUE)
```

Arguments

N integer vector of sample sizes \(N \) for which vocabulary growth data is available

V vector of corresponding vocabulary sizes \(V(N) \), or expected vocabulary sizes \(E[V(N)] \) for an interpolated or expected VGC.

Vm optional list of growth vectors for hapaxes \(V_1(N) \), dis legomena \(V_2(N) \), etc. Up to 9 growth vectors are accepted (i.e. \(V_m(N) \) for \(m \leq 9 \)). For an interpolated or expected VGC, the vectors represent expected class sizes \(E[V_m(N)] \).
optional vector of variances $\text{Var}[V(N)]$ for an interpolated or expected VGC

optional list of variance vectors $\text{Var}[V_m(N)]$ for an expected VGC. If present, these vectors must be defined for exactly the same frequency classes m as the vectors in V_m.

if TRUE, the object represents an interpolated or expected VGC (for informational purposes only)

by default, various sanity checks are performed on the data supplied to the spc constructor. Specify check=FALSE to skip these sanity test, e.g. when automatically processing data from external programs that may be numerically unstable.

Details

If variances (V or V_m) are specified for an expected VGC, all relevant vectors must be given. In other words, V always has to be present in this case, and V_m has to be present whenever V_m is specified, and must contain vectors for exactly the same frequency classes.

V and V_m are integer vectors for an observed VGC, but will usually be fractional for an interpolated or expected VGC.

A vgc object is a data frame with the following variables:

N sample size N

V corresponding vocabulary size (either observed vocabulary size $V(N)$ or expected vocabulary size $E[V(N)]$)

$V_1 \ldots V_9$ optional: observed or expected spectrum elements ($V_m(N)$ or $E[V_m(N)]$). Not all of these variables have to be present, but there must not be any "gaps" in the spectrum.

V optional: variance of expected vocabulary size, $\text{Var}[V(N)]$

$V_1 \ldots V_9$ optional: variances of expected spectrum elements, $\text{Var}[V_m(N)]$. If variances are present, they must be available for exactly the same frequency classes as the corresponding expected values.

The following attributes are used to store additional information about the vocabulary growth curve:

m.max if non-zero, the VGC includes spectrum elements $V_m(N)$ for m up to m.max. For m.max=0, no spectrum elements are present.

expected if TRUE, the object represents an interpolated or expected VGC, with expected vocabulary size and spectrum elements. Otherwise, the object represents an observed VGC.

hasVariances indicates whether or not the V variable is present (as well as V_1, V_2, etc., if appropriate)

Value

An object of class vgc representing the specified vocabulary growth curve. This object should be treated as read-only (although such behaviour cannot be enforced in R).
See Also

`read.vgc`, `write.vgc`, `plot.vgc`, `vgc.interp`, `lnre.vgc`

Generic methods supported by `vgc` objects are `print`, `summary`, `N`, `V`, `Vm`, and `VVm`.

Implementation details and non-standard arguments for these methods can be found on the man-pages `print.vgc`, `summary.vgc`, `N.vgc`, `V.vgc`, etc.

Examples

```r
## load Dickens' work empirical vgc and take a look at it
data(Dickens.emp.vgc)
summary(Dickens.emp.vgc)
print(Dickens.emp.vgc)
plot(Dickens.emp.vgc, add.m=1)

## vectors of sample sizes in the vgc, and the
## corresponding V and V_1 vectors
Ns <- N(Dickens.emp.vgc)
Vs <- V(Dickens.emp.vgc)
Vm <- V(Dickens.emp.vgc,1)

## binomially interpolated V and V_1 at the same sample sizes
## as the empirical curve
data(Dickens.spc)
Dickens.bin.vgc <- vgc.interp(Dickens.spc, N(Dickens.emp.vgc), m.max=1)

## compare observed and interpolated
plot(Dickens.emp.vgc, Dickens.bin.vgc, add.m=1, legend=c("observed", "interpolated"))

## load Italian ultra- prefix data
data(ItaUltra.spc)

## compute zm model
zm <- lnre("zm", ItaUltra.spc)

## compute vgc up to about twice the sample size
## with variance of V
zm.vgc <- lnre.vgc(zm, (1:100)*70, variances=TRUE)

summary(zm.vgc)
print(zm.vgc)

## plot with confidence intervals derived from variance in
## vgc (with larger datasets, ci will typically be almost
## invisible)
plot(zm.vgc)

## for more examples of vgc usages, see manpages of lnre.vgc,
```
vgc.interp

plot.vgc, print.vgc and vgc.interp

vgc.interp

Expected Vocabulary Growth by Binomial Interpolation (zipfR)

Description

vgc.interp computes the expected vocabulary growth curve for random sample taken from a data set described by the frequency spectrum object obj.

Usage

```r
ggc.interp(obj, N, m.max=0, allow.extrapolation=FALSE)
```

Arguments

- `obj`:
 - an object of class spc, representing the frequency spectrum of the data set from which samples are taken

- `N`:
 - a vector of increasing non-negative integers specifying the sample sizes for which the expected vocabulary size is calculated (as well as expected spectrum elements if requested)

- `m.max`:
 - an integer in the range 1...9, specifying the number of spectrum elements to be included in the vocabulary growth curve (default: none)

- `allow.extrapolation`:
 - if TRUE, the requested sample sizes N may be larger than the sample size of the frequency spectrum obj, so that binomial extrapolation is performed. This option should be used with great caution (see EV.spc for details).

Details

See the `EV.spc` manpage for more information, especially concerning binomial extrapolation.

Note that the result of vgc.interp is an object of class vgc (a vocabulary growth curve), but its input is an object of class spc (a frequency spectrum).

Value

An object of class vgc, representing the expected vocabulary growth curves for random samples taken from the data set described by obj. Data points will be generated for the specified sample sizes N.
VV and VVm are generic methods that can (and should) be used to compute the variance of the vocabulary size and the variances of spectrum elements according to an LNRE model (i.e. an object of class lnre). These methods are also used to access variance information stored in some objects of class spc and vgc.

Usage

\[
\text{VV}(\text{obj}, N=\text{NA}, \ldots)
\]

\[
\text{VVM}(\text{obj}, m, N=\text{NA}, \ldots)
\]

Arguments

\text{obj} \quad \text{an object of class lnre (LNRE model), spc (frequency spectrum) or vgc (vocabulary growth curve).}
m

positive integer value determining the frequency class \(m \) for which variances are returned (or a vector of such values).

N

sample size \(N \) for which variances are calculated (1nre objects only)

\ldots

additional arguments passed on to the method implementation (see respective manpages for details)

Details

spc and vgc objects must represent an expected or interpolated frequency spectrum or VGC, and must include variance data.

For vgc objects, the \(\text{VVm} \) method allows only a single value \(m \) to be specified.

The argument \(N \) is only allowed for LNRE models and will trigger an error message otherwise.

Value

For a LNRE model (class 1nre), \(\text{VV} \) computes the variance of the random variable \(V(N) \) (vocabulary size), and \(\text{VVm} \) computes the variance of the random variables \(V_m(N) \) (spectrum elements), for a sample of specified size \(N \).

For an observed or interpolated frequency spectrum (class spc), \(\text{VV} \) returns the variance of the expected vocabulary size, and \(\text{VVm} \) returns variances of the spectrum elements. These methods are only applicable if the spc object includes variance information.

For an expected or interpolated vocabulary growth curve (class vgc), \(\text{VV} \) returns the variance vector of the expected vocabulary sizes \(V \), and \(\text{VVm} \) the corresponding vector for \(V_m \). These methods are only applicable if the vgc object includes variance information.

See Also

For details on the implementations of these methods, see \(\text{VV.spc} \), \(\text{VV.vgc} \), etc.

Expected vocabulary size and frequency spectrum for a sample of size \(N \) according to a LNRE model can be computed with the analogous methods \(\text{EV} \) and \(\text{EVm} \). For spc and vgc objects, \(V \) and \(V_m \) are always accessed with the methods \(V \) and \(Vm \), even if they represent expected or interpolated values.

Examples

see lnre documentation for examples
zipfR.par

Set or Query Graphics Parameters (zipfR)

Description

Set default graphics parameters for zipfR high-level plots and plot utilities, similar to par for general graphics parameters. The current parameter values are queried by giving their names as character strings. The values can be set by specifying them as arguments in name=value form, or by passing a single list of named values.

NB: This is an advanced function to fine-tune zipfR plots. For basic plotting options (that are likely to be sufficient for most purposes) see plot.spc and plot.vgc instead.

Usage

zipfR.par(..., bw.mode=FALSE)

Arguments

... either character strings (or vectors) specifying the names of parameters to be queried, or parameters to be set in name=value form, or a single list of named values. A listing of valid parameter names is given below.

bw.mode if TRUE and parameter values are queried, then return the corresponding parameters for B/W mode if possible (e.g., zipfR.par("col", bw.mode=TRUE) returns the value of the col.bw parameter). Note that bw.mode cannot be abbreviated in the function call!

Details

Parameters are set by specifying their names and the new values as name=value pairs. Such a list can also be passed as a single argument to zipfR.par, which is typically used to restore previous parameter values (that have been saved in a list variable).

Most of the default values can be manually overridden in the high-level plots.

zipfR.par() shows all parameters with their current values, and names(zipfR.par()) produces a listing of valid parameter names.

Value

When parameters are set, their former values are returned in an invisible named list. Such a list can be passed as a single argument to zipfR.par to restore the parameter values.

When a single parameter is queried, its value is returned directly. When two or more parameters are queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list, but querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).
zipfR Graphics Parameters

- **col**: A character or integer vector specifying up to 10 line colours (see the `par` manpage for details). Values of shorter vectors are recycled as necessary.

- **lty**: A character or integer vector specifying up to 10 line styles (see the `par` manpage for details). Values of shorter vectors are recycled as necessary.

- **lwd**: A numeric vector specifying up to 10 line widths (see the `par` manpage for details). Values of shorter vectors are recycled as necessary.

- **pch**: A character or integer vector specifying up to 10 plot symbols. Values of shorter vectors are recycled as necessary.

- **barcol**: A character or integer vector specifying up to 10 colours for the bars in non-logarithmic spectrum plots. Values of shorter vectors are recycled as necessary.

- **col.bw**: The line colours used in B/W mode (`bw=TRUE`).

- **lty.bw**: The line styles used in B/W mode (`bw=TRUE`).

- **lwd.bw**: The line widths used in B/W mode (`bw=TRUE`).

- **pch.bw**: The plot symbols used in B/W mode (`bw=TRUE`).

- **barcol.bw**: The bar colours used in B/W mode (`bw=TRUE`).

- **bw**: If `TRUE`, plots are drawn in B/W mode unless specified otherwise (default: `FALSE`, i.e., colour mode).

- **device**: Plot device used by the `zipfR` plotutils (see `zipfR.begin.plot` for details). Currently supported devices are `x11` (default on most platforms), `eps`, `pdf`, as well as `png` and `quartz` where available (default on Mac OS X).

- **init.par**: List of named graphics parameters passed to the `par` function whenever a new viewport is created with `zipfR.begin.plot`.

- **width, height**: Default width and height of the plotting window opened by `zipfR.begin.plot`.

See Also

- `plot.spc`, `plot.vgc`, `zipfR.begin.plot`, `zipfR.end.plot`

Examples

```r
print(names(zipfR.par()))  # list available parameters

zipfR.par("col", "lty", "lwd")  # the default line styles
zipfR.par(c("col", "lty", "lwd"))  # works as well

## temporary changes to graphics parameters:
par.save <- zipfR.par(bw=TRUE, lwd.bw=2)
## plots use the modified parameters here
zipfR.par(par.save)  # restore previous values
```
Description

These functions are deprecated and should not be used in new code.

Conveniently create plots with different layout and in different output formats (both on-screen and various graphics file formats).

Each plot is wrapped in a pair of `zipfR.begin.plot` and `zipfR.end.plot` commands, which make sure that a suitable plotting window / image file is opened and closed as required. Format and dimensions of the plots are controlled by global settings made with `zipfR.par`, but can be overridden in the `zipfR.begin.plot` call.

`zipfR.pick.device` automatically selects a default device by scanning the specified vector for strings of the form `--pdf`, `--eps`, etc.

NB: These are advanced functions intended to make it easier to produce plots in different formats. Most users will only need the basic plotting functionalities provided by `plot.tfl`, `plot.spc` and `plot.vgc`.

Usage

```r
zipfR.pick.device(args=commandArgs())

zipfR.begin.plot(device=zipfR.par("device"), filename="", width=zipfR.par("width"), height=zipfR.par("height"), bg=zipfR.par("bg"), pointsize=zipfR.par("pointsize"))

## plotting commands go here

zipfR.end.plot(shutdown=FALSE)
```

Arguments

- **args**: a character vector, which will be scanned for strings of the form `--pdf`, `--eps`, etc. If `args` is not specified, the command-line arguments supplied to R will be examined.
- **device**: name of plotting device to be used (see "Devices" below)
- **filename**: for graphics file devices, basename of the output file. A suitable extension for the selected file format will be added automatically to `filename`. This parameter is ignored for screen devices.
- **width, height**: width and height of the plotting window or image, in inches
- **bg**: background colour of the plotting window or image (use "transparent" for images with transparent background)
pointsize default point size for text in the plot
shutdown if set to FALSE (the default), on-screen plot devices will be kept open for re-use in the next plot. Specify shutdown=TRUE to ensure that the screen device is closed after a series of related plots.

Details

zipfR.begin.plot opens a new plotting window or image file of the specified dimensions (width, height), using the selected graphics device (device). Background colour (bg) and default point size (pointsize) are set as requested. Then, any global graphics parameter settings (defined with the init.par option of zipfR.par) are applied. See the zipfR.par manpage for the "factory default" settings of these options.

zipfR.end.plot finalizes the current plot. For image file devices, the device will be closed, writing the generated file to disk. For screen devices, the plotting window remains visible until a new plot is started (which will close and re-open the plotting window).

The main purpose of the zipfR plotting utilities is to make it easier to draw plots that are both shown on screen (for interactive work) and saved to image files in various formats. If an R script specifies filenames in all zipfR.begin.plot commands, a single global parameter setting at the start of the script is sufficient to switch from screen graphics to EPS files, or any other supported file format.

On-screen plotting devices are platform-dependent, and there may be different devices available depending on which version of R is used. For this reason, zipfR.begin.plot no longer allows users to pick an on-screen device explicitly, but rather opens a default device with dev.new. Note that this default device may write output to a graphics file, but is usually set to a suitable on-screen device in an interactive R session. In any case, users can change the default by setting options(device=...). For backwards-compatibility, the device name x11 (and quartz on macOS is accepted for the default graphics device.

The png bitmap device may not be available on all platforms, and may also require access to an X server. Since the width and height of a PNG device have to be specified in pixels rather than inches, zipfR.begin.plot translates the width and height settings, assuming a resolution of 150 dpi. Use of the png device is strongly discouraged. A better way of producing high-quality bitmaps is to generate EPS image (with the eps device) and convert them to PNG or JPEG format with the external pstoimg program (part of the latex2html distribution).

zipfR.pick.device will issue a warning if multiple flags matching supported graphics devices are found. However, it is not an error to find no matching flag, and all unrecognized strings are silently ignored.

Value

zipfR.begin.plot invisibly returns the ID of the active plot device.

Devices

Currently, the following devices are supported (and can be used in the device argument).

Screen devices:

x11 opens the default graphic device set by getOption("device"). In an interactive R sessions, this will usually be a suitable on-screen device.
quartz accepted as an alias for x11 on macOS platforms

Graphics file devices:

eps Encapsulated PostScript (EPS) output (using postscript device with appropriate settings)

pdf PDF output

png PNG bitmap file (may not be available on all platforms)

See Also

`zipfR.par`, `par`, `Devices`, `dev.new`, `postscript`, `pdf` and `png` for more information about the supported graphics devices

`zipfR`-specific plotting commands are `plot.spc`, `plot.spc` and `plot.vgc`

Examples

```r
## Not run:
## these graphics parameters will be set for every new plot
zipfR.par(init.par=list(bg="lightblue", cex=1.3))
zipfR.par(width=12, height=9)

## will be shown on screen or saved to specified file, depending on
## selected device (eps -> "myplot.eps", pdf -> "myplot.pdf", etc.)
zipfR.begin.plot(filename="myplot")
plot.spc(Brown100k.spc)
zipfR.end.plot()

## By starting an R script "myplots.R" with this command, you can
## display plots on screen when stepping through the script in an
## interactive session, or save them to disk files in various
## graphics formats with "R --no-save --args --pdf < myplots.R" etc.
zipfR.pick.device()

## End(Not run)
```
Index

* classes
 spc, 86
 tfl, 93
 vgc, 98

* datasets
 Baayen2001, 5
 Brown, 11
 BrownSubsets, 12
 Dickens, 14
 EvertLuedeling2001, 19
 ItaPref, 20
 Tiger, 95

* device
 zipfR.plotutils, 106

* distribution
 EV-EVm, 17
 EV-EVm.spc, 18
 LNRE, 21
 lnre, 24
 lnre.bootstrap, 29
 lnre.fzm, 36
 lnre.gigp, 39
 lnre.spc, 45
 lnre.vgc, 46
 lnre.zm, 48
 LNRE_posterior, 50
 sample.spc, 84
 sample.tfl, 85
 spc.interp, 88
 vgc.interp, 101
 VV-Vm, 102

* file
 read.multiple.objects, 77
 read.spc, 78
 read.tfl, 80
 read.vgc, 82

* hplot
 plot.lnre, 58
 plot.spc, 60
 plot.tfl, 62
 plot.vgc, 65

* htest
 confint.lnre, 13

* iplot
 zipfR.par, 104

* manip
 EV-EVm.spc, 18
 merge.tfl, 51
 N-V-Vm, 52
 N-V-Vm.spc, 54
 N-V-Vm.tfl, 55
 N-V-Vm.vgc, 56
 sample.spc, 84
 sample.tfl, 85
 spc.interp, 88
 spc.vector, 90
 spc2tfl, 91
 vec2xxx, 96
 vgc.interp, 101
 VV-Vm, 102

* math
 beta_gamma, 6

* methods
 EV-EVm, 17
 EV-EVm.spc, 18
 lnre.productivity.measures, 43
 N-V-Vm, 52
 productivity.measures, 73
 VV-Vm, 102

* models
 estimate.model, 15
 EV-EVm, 17
 LNRE, 21
 lnre, 24
 lnre.bootstrap, 29
 lnre.details, 34
 lnre.fzm, 36
 lnre.gigp, 39

109
lnre.goodness.of.fit, 41
lnre.sp, 45
lnre.vgc, 46
lnre.zm, 48
LNRE_posterior, 50
VV=Vm, 102
* optimize
 estimate.model, 15
 lnre.goodness.of.fit, 41
* package
 zipfR-package, 3
* print
 print.lnre, 68
 print.sp, 69
 print.tfl, 71
 print.vgc, 72
* programming
 lnre.details, 34
* univar
 bootstrap.confint, 9
 lnre.productivity.measures, 43
 productivity.measures, 73

Baayen2001, 5
beta, 8
beta_gamma, 6
bootstrap.confint, 9, 13, 14, 43, 44
Brown, 11, 12
Brown100k (BrownSubsets), 12
BrownAdj (BrownSubsets), 12
BrownImg (BrownSubsets), 12
BrownImage (BrownSubsets), 12
BrownNoun (BrownSubsets), 12
BrownSubsets, 11, 12
BrownVer (BrownSubsets), 12

Cbeta (beta_gamma), 6
Cgamma (beta_gamma), 6
confint, 32
confint.lnre, 10, 13, 27

detectCores, 31
dev.new, 107, 108
Devices, 108
Dickens, 14
DickensGreatExpectations (Dickens), 14
DickensOliverTwist (Dickens), 14
DickensOurMutualFriend (Dickens), 14
dlnre (LNRE), 21
estimate.model, 15, 27, 36
EV, 19, 27, 44, 53, 103
EV (EV=EVm), 17
EV=EVm, 17
EV=EVm.sp, 18
EV.sp, 17, 89, 101, 102
EV.sp (EV=EVm.sp), 18
EvertLuedeling2001, 19
EVm, 19, 27, 44, 53, 103
EVm (EV=EVm), 17
EVm.sp, 17, 89, 102
EVm.sp (EV=EVm.sp), 18
file, 80
gamma, 8
getOption, 107
hist, 13
Ibeta (beta_gamma), 6
Igamma (beta_gamma), 6
IQR, 10
ItaPref, 20
ItaRI (ItaPref), 20
ItaULtra (ItaPref), 20

lbeta, 8
ldlnre, 51, 59
ldlnre (LNRE), 21
lgamma, 8
LNRE, 21, 51
lnre, 4, 14–17, 23, 24, 33, 34, 36, 38, 40, 42, 44, 46, 47, 49–51, 59, 61, 66, 69
lnre.bootstrap, 10, 14, 25, 27, 29, 43, 44
lnre.details, 16, 17, 25, 27, 34
lnre.fzm, 25, 27, 36, 36
lnre.gigp, 25, 27, 36, 39
lnre.goodness.of.fit, 26, 28, 36, 41
lnre.productivity.measures, 10, 33, 43, 76
lnre.sp, 27, 45, 61, 86, 87
lnre.technical.details (lnre.details), 34
lnre.vgc, 4, 27, 46, 66, 98, 100
lnre.zm, 25, 27, 36, 38, 40, 48
LNRE_posterior, 50
ldlnre, 59
ldlnre (LNRE), 21
INDEX

mad, 10
makeCluster, 30, 31
merge.tfl, 51
N, 27, 55–57, 87, 94, 100
N (N-V-Vm), 52
N-V-Vm, 52
N-V-Vm.spc, 54
N-V-Vm.tfl, 55
N-V-Vm.vgc, 56
N.spc, 53, 87, 91
N.spc (N-V-Vm.spc), 54
N.tfl, 53, 94
N.tfl (N-V-Vm.tfl), 55
N.vgc, 53, 100
N.vgc (N-V-Vm.vgc), 56
nlm, 17, 27
optim, 17, 27
par, 59, 63, 105, 108
pbeta, 8
pdf, 108
pgamma, 8
pllnre, 59
pllnre (LNRE), 21
plot, 63
plot.default, 60, 63, 65
plot.lnre, 27, 58, 64
plot.spc, 4, 60, 64, 66, 87, 104–106, 108
plot.tfl, 59, 61, 62, 66, 94, 106
plot.vgc, 4, 61, 64, 65, 100, 104–106, 108
postldlnre (LNRE_posterior), 50
postldlnre (LNRE_posterior), 50
postpllnre (LNRE_posterior), 50
postqlnre (LNRE_posterior), 50
postscript, 108
print, 27, 68, 69, 71, 72, 87, 94, 100
print.lnre, 27, 68
print.spc, 69, 87
print.tfl, 71, 94
print.vgc, 72, 100
productivity.measures, 32, 43, 44, 73
qlnre (LNRE), 21
Rbeta (beta_gamma), 6
read.multiple.objects, 77
read.spc, 4, 77, 78, 81, 83, 86, 87
read.tfl, 4, 77, 79, 80, 83, 93, 94
read.vgc, 4, 77, 79, 81, 82, 98, 100
readLines, 97
Rgamma (beta_gamma), 6
rlnre, 29, 64, 97
rlnre (LNRE), 21
sample.spc, 84, 86, 87, 89
sample.tfl, 84, 85, 94
scan, 97
spc, 4, 5, 11, 12, 14, 20, 46, 55, 61, 70, 77, 79,
84, 86, 89, 91, 92, 95, 97, 102
spc.interp, 17, 19, 88, 102
spc.vector, 87, 90
spc2tfl, 64, 87, 91, 93, 94
summary, 27, 68, 69, 71, 72, 87, 94, 100
summary.lnre (print.lnre), 68
summary.spc, 87
summary.spc (print.spc), 69
summary.tfl, 94
summary.tfl (print.tfl), 71
summary.vgc, 100
summary.vgc (print.vgc), 72
tdlnre (LNRE), 21
tfl, 4, 11, 20, 22, 51, 52, 56, 64, 71, 77, 81,
86, 92, 93, 95, 97
tfl2spc, 23, 87, 94
tfl2spc (spc2tfl), 91
Tiger, 95
TigerNP (Tiger), 95
TigerPP (Tiger), 95
tpllnre (LNRE), 21
tqlnre (LNRE), 21
V, 27, 55–57, 87, 94, 100, 103
V (N-V-Vm), 52
V.spc, 87, 91
V.spc (N-V-Vm.spc), 54
V.tfl, 94
V.tfl (N-V-Vm.tfl), 55
V.vgc, 100
V.vgc (N-V-Vm.vgc), 56
vec2spc, 23
vec2spc (vec2xxx), 96
vec2tfl, 23, 64
vec2tfl (vec2xxx), 96
vec2vgc, 23
vec2vgc (vec2xxx), 96
vec2xxx, 96
vgc, 4, 11, 12, 14, 20, 47, 57, 66, 73, 77, 83, 95, 97, 98, 102
vgc.interp, 17, 19, 89, 98, 100, 101
Vm, 27, 55–57, 87, 94, 100, 103
Vm (N–V–Vm), 52
Vm.spc, 91
Vm.spc (N-V–Vm.spc), 54
Vm.tfl (N-V–Vm.tfl), 55
Vm.vgc (N-V–Vm.vgc), 56
VV, 17, 27, 53, 55, 57, 87, 100
VV (VV–Vm), 102
VV–Vm, 102
VV.spc, 91, 103
VV.spc (N-V–Vm.spc), 54
VV.vgc, 103
VV.vgc (N-V–Vm.vgc), 56
VVm, 17, 27, 53, 55, 57, 87, 100
VVm (VV–Vm), 102
VVm.spc, 91
VVm.spc (N-V–Vm.spc), 54
VVm.vgc (N-V–Vm.vgc), 56

write.spc, 87
write.spc (read.spc), 78
write.tfl, 94
write.tfl (read.tfl), 80
write.vgc, 100
write.vgc (read.vgc), 82

zipfR, 11, 20
zipfR (zipfR-package), 3
zipfR-package, 3
zipfR.begin.plot, 105
zipfR.begin.plot (zipfR.plotutils), 106
zipfR.end.plot, 105
zipfR.end.plot (zipfR.plotutils), 106
zipfR.par, 58–61, 63, 64, 66, 104, 107, 108
zipfR.pick.device (zipfR.plotutils), 106
zipfR.plotutils, 59, 61, 64, 66, 106